Functional Analytic Methods for Evolution Equations
This book consist of five introductory contributions by leading mathematicians on the functional analytic treatment of evolutions equations. In particular the contributions deal with Markov semigroups, maximal L^p-regularity, optimal control problems for boundary and point control systems, parabolic...
Κύριοι συγγραφείς: | , , , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2004.
|
Έκδοση: | 1st ed. 2004. |
Σειρά: | Lecture Notes in Mathematics,
1855 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Giuseppe Da Prato: An Introduction to Markov Semigroups
- Peer C. Kunstmann and Lutz Weis: Maximal$L_p§-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty $-functional Calculus
- Irena Lasiecka: Optimal Control Problems and Riccati Equations for Systems with Unbounded Controls and Partially Analytic Generators-Applications to Boundary and Point Control Problems
- Alessandra Lunardi: An Introduction to Parabolic Moving Boundary Problems
- Roland Schnaubelt: Asymptotic Behaviour of Parabolic Nonautonomous Evolution Equations.