Handwriting Recognition Soft Computing and Probabilistic Approaches /

Over the last few decades, research on handwriting recognition has made impressive progress. The research and development on handwritten word recognition are to a large degree motivated by many application areas, such as automated postal address and code reading, data acquisition in banks, text-voic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Liu, Zhi-Qiang (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Cai, Jin-Hai (http://id.loc.gov/vocabulary/relators/aut), Buse, Richard (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Studies in Fuzziness and Soft Computing, 133
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06316nam a2200637 4500
001 978-3-540-44850-1
003 DE-He213
005 20191022031305.0
007 cr nn 008mamaa
008 121116s2003 gw | s |||| 0|eng d
020 |a 9783540448501  |9 978-3-540-44850-1 
024 7 |a 10.1007/978-3-540-44850-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Liu, Zhi-Qiang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Handwriting Recognition  |h [electronic resource] :  |b Soft Computing and Probabilistic Approaches /  |c by Zhi-Qiang Liu, Jin-Hai Cai, Richard Buse. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XV, 230 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 133 
505 0 |a 1 Introduction -- 1.1 Feature Extraction Methods -- 1.2 Pattern Recognition Methods -- 2 Pre-processing and Feature Extraction -- 2.1 Pre-processing of Handwritten Images -- 2.2 Feature Extraction from Binarized Images -- 2.3 Feature Extraction Using Gabor Filters -- 2.4 Concluding Remarks -- 3 Hidden Markov Model-Based Method for Recognizing Handwritten Digits -- 3.1 Theory of Hidden Markov Models -- 3.2 Recognizing Handwritten Numerals Using Statistical and Structural Information -- 3.3 Experimental Results -- 3.4 Conclusion -- 4 Markov Models with Spectral Features for Handwritten Numeral Recognition -- 4.1 Related Work Using Contour Information -- 4.2 Fourier Descriptors -- 4.3 Hidden Markov Model in Spectral Space -- 4.4 Experimental Results -- 4.5 Discussion -- 5 Markov Random Field Model for Recognizing Handwritten Digits -- 5.1 Fundamentals of Markov Random Fields -- 5.2 Markov Random Field for Pattern Recognition -- 5.3 Recognition of Handwritten Numerals Using MRF Models -- 5.4 Conclusion -- 6 Markov Random Field Models for Recognizing Handwritten Words -- 6.1 Markov Random Field for Handwritten Word Recognition -- 6.2 Neighborhood Systems and Cliques -- 6.3 Clique Functions -- 6.4 Maximizing the Compatibility with Relaxation Labeling -- 6.5 Design of Weights -- 6.6 Experimental Results -- 6.7 Conclusion -- 7 A Structural and Relational Approach to Handwritten Word Recognition -- 7.1 Introduction -- 7.2 Gabor Parameter Estimation -- 7.3 Feature Extraction -- 7.4 Conditional Rule Generation System -- 7.5 Experimental Results -- 7.6 Conclusion -- 8 Handwritten Word Recognition Using Fuzzy Logic -- 8.1 Introduction -- 8.2 Extraction of Oriented Parts -- 8.3 System Training -- 8.4 Word Recognition -- 8.5 Experimental Results -- 8.6 Conclusion -- 9 Conclusion -- 9.1 Summary and Discussions -- 9.2 Future Directions -- 9.3 References. 
520 |a Over the last few decades, research on handwriting recognition has made impressive progress. The research and development on handwritten word recognition are to a large degree motivated by many application areas, such as automated postal address and code reading, data acquisition in banks, text-voice conversion, security, etc. As the prices of scanners, com­ puters and handwriting-input devices are falling steadily, we have seen an increased demand for handwriting recognition systems and software pack­ ages. Some commercial handwriting recognition systems are now available in the market. Current commercial systems have an impressive performance in recognizing machine-printed characters and neatly written texts. For in­ stance, High-Tech Solutions in Israel has developed several products for container ID recognition, car license plate recognition and package label recognition. Xerox in the U. S. has developed TextBridge for converting hardcopy documents into electronic document files. In spite of the impressive progress, there is still a significant perfor­ mance gap between the human and the machine in recognizing off-line unconstrained handwritten characters and words. The difficulties encoun­ tered in recognizing unconstrained handwritings are mainly caused by huge variations in writing styles and the overlapping and the interconnection of neighboring characters. Furthermore, many applications demand very high recognition accuracy and reliability. For example, in the banking sector, although automated teller machines (ATMs) and networked banking sys­ tems are now widely available, many transactions are still carried out in the form of cheques. 
650 0 |a Artificial intelligence. 
650 0 |a Learning. 
650 0 |a Instruction. 
650 0 |a Pattern recognition. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computational complexity. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Learning & Instruction.  |0 http://scigraph.springernature.com/things/product-market-codes/O22000 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Natural Language Processing (NLP).  |0 http://scigraph.springernature.com/things/product-market-codes/I21040 
650 2 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
700 1 |a Cai, Jin-Hai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Buse, Richard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642072802 
776 0 8 |i Printed edition:  |z 9783540401773 
776 0 8 |i Printed edition:  |z 9783642536113 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 133 
856 4 0 |u https://doi.org/10.1007/978-3-540-44850-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)