Handwriting Recognition Soft Computing and Probabilistic Approaches /

Over the last few decades, research on handwriting recognition has made impressive progress. The research and development on handwritten word recognition are to a large degree motivated by many application areas, such as automated postal address and code reading, data acquisition in banks, text-voic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Liu, Zhi-Qiang (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Cai, Jin-Hai (http://id.loc.gov/vocabulary/relators/aut), Buse, Richard (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Studies in Fuzziness and Soft Computing, 133
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Introduction
  • 1.1 Feature Extraction Methods
  • 1.2 Pattern Recognition Methods
  • 2 Pre-processing and Feature Extraction
  • 2.1 Pre-processing of Handwritten Images
  • 2.2 Feature Extraction from Binarized Images
  • 2.3 Feature Extraction Using Gabor Filters
  • 2.4 Concluding Remarks
  • 3 Hidden Markov Model-Based Method for Recognizing Handwritten Digits
  • 3.1 Theory of Hidden Markov Models
  • 3.2 Recognizing Handwritten Numerals Using Statistical and Structural Information
  • 3.3 Experimental Results
  • 3.4 Conclusion
  • 4 Markov Models with Spectral Features for Handwritten Numeral Recognition
  • 4.1 Related Work Using Contour Information
  • 4.2 Fourier Descriptors
  • 4.3 Hidden Markov Model in Spectral Space
  • 4.4 Experimental Results
  • 4.5 Discussion
  • 5 Markov Random Field Model for Recognizing Handwritten Digits
  • 5.1 Fundamentals of Markov Random Fields
  • 5.2 Markov Random Field for Pattern Recognition
  • 5.3 Recognition of Handwritten Numerals Using MRF Models
  • 5.4 Conclusion
  • 6 Markov Random Field Models for Recognizing Handwritten Words
  • 6.1 Markov Random Field for Handwritten Word Recognition
  • 6.2 Neighborhood Systems and Cliques
  • 6.3 Clique Functions
  • 6.4 Maximizing the Compatibility with Relaxation Labeling
  • 6.5 Design of Weights
  • 6.6 Experimental Results
  • 6.7 Conclusion
  • 7 A Structural and Relational Approach to Handwritten Word Recognition
  • 7.1 Introduction
  • 7.2 Gabor Parameter Estimation
  • 7.3 Feature Extraction
  • 7.4 Conditional Rule Generation System
  • 7.5 Experimental Results
  • 7.6 Conclusion
  • 8 Handwritten Word Recognition Using Fuzzy Logic
  • 8.1 Introduction
  • 8.2 Extraction of Oriented Parts
  • 8.3 System Training
  • 8.4 Word Recognition
  • 8.5 Experimental Results
  • 8.6 Conclusion
  • 9 Conclusion
  • 9.1 Summary and Discussions
  • 9.2 Future Directions
  • 9.3 References.