Asymptotic Combinatorics with Applications to Mathematical Physics A European Mathematical Summer School held at the Euler Institute, St. Petersburg, Russia, July 9-20, 2001 /
At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2003.
|
Έκδοση: | 1st ed. 2003. |
Σειρά: | Lecture Notes in Mathematics,
1815 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Random matrices, orthogonal polynomials and Riemann - Hilbert problem
- Asymptotic representation theory and Riemann - Hilbert problem
- Four Lectures on Random Matrix Theory
- Free Probability Theory and Random Matrices
- Algebraic geometry,symmetric functions and harmonic analysis
- A Noncommutative Version of Kerov's Gaussian Limit for the Plancherel Measure of the Symmetric Group
- Random trees and moduli of curves
- An introduction to harmonic analysis on the infinite symmetric group
- Two lectures on the asymptotic representation theory and statistics of Young diagrams
- III Combinatorics and representation theory
- Characters of symmetric groups and free cumulants
- Algebraic length and Poincaré series on reflection groups with applications to representations theory
- Mixed hook-length formula for degenerate a fine Hecke algebras.