The Decomposition of Primes in Torsion Point Fields

It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Adelmann, Clemens (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Mathematics, 1761
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03492nam a2200493 4500
001 978-3-540-44949-2
003 DE-He213
005 20191027122710.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540449492  |9 978-3-540-44949-2 
024 7 |a 10.1007/b80624  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Adelmann, Clemens.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Decomposition of Primes in Torsion Point Fields  |h [electronic resource] /  |c by Clemens Adelmann. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a VIII, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1761 
505 0 |a Introduction -- Decomposition laws -- Elliptic curves -- Elliptic modular curves -- Torsion point fields -- Invariants and resolvent polynomials -- Appendix: Invariants of elliptic modular curves; L-series coefficients a p; Fully decomposed prime numbers; Resolvent polynomials; Free resolution of the invariant algebra. 
520 |a It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662185209 
776 0 8 |i Printed edition:  |z 9783540420354 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1761 
856 4 0 |u https://doi.org/10.1007/b80624  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)