Mathematical Methods of Quantum Optics

This book provides an accessible introduction to the mathematical methods of quantum optics. Starting from first principles, it reveals how a given system of atoms and a field is mathematically modelled. The method of eigenfunction expansion and the Lie algebraic method for solving equations are out...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Puri, Ravinder R. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Springer Series in Optical Sciences, 79
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 07308nam a2200577 4500
001 978-3-540-44953-9
003 DE-He213
005 20191022021845.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540449539  |9 978-3-540-44953-9 
024 7 |a 10.1007/978-3-540-44953-9  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHJ  |2 bicssc 
072 7 |a SCI053000  |2 bisacsh 
072 7 |a PHJ  |2 thema 
072 7 |a PHQ  |2 thema 
082 0 4 |a 535.15  |2 23 
100 1 |a Puri, Ravinder R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Methods of Quantum Optics  |h [electronic resource] /  |c by Ravinder R. Puri. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a XIII, 289 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Optical Sciences,  |x 0342-4111 ;  |v 79 
505 0 |a 1. Basic Quantum Mechanics -- 1.1 Postulates of Quantum Mechanics -- 1.2 Geometric Phase -- 1.3 Time-Dependent Approximation Method -- 1.4 Quantum Mechanics of a Composite System -- 1.5 Quantum Mechanics of a Subsystem and Density Operator -- 1.6 Systems of One and Two Spin-1/2s -- 1.7 Wave-Particle Duality -- 1.8 Measurement Postulate and Paradoxes of Quantum Theory -- 1.9 Local Hidden Variables Theory -- 2. Algebra of the Exponential Operator -- 2.1 Parametric Differentiation of the Exponential -- 2.2 Exponential of a Finite-Dimensional Operator -- 2.3 Lie Algebraic Similarity Transformations -- 2.4 Disentangling an Exponential -- 2.5 Time-Ordered Exponential Integral -- 3. Representations of Some Lie Algebras -- 3.1 Representation by Eigenvectors and Group Parameters -- 3.2 Representations of Harmonic Oscillator Algebra -- 3.3 Representations of SU(2) -- 3.4 Representations of SU(1, 1) -- 4. Quasiprobabilities and Non-classical States -- 4.1 Phase Space Distribution Functions -- 4.2 Phase Space Representation of Spins -- 4.3 Quasiprobabilitiy Distributions for Eigenvalues of Spin Components -- 4.4 Classical and Non-classical States -- 5. Theory of Stochastic Processes -- 5.1 Probability Distributions -- 5.2 Markov Processes -- 5.3 Detailed Balance -- 5.4 Liouville and Fokker-Planck Equations -- 5.5 Stochastic Differential Equations -- 5.6 Linear Equations with Additive Noise -- 5.7 Linear Equations with Multiplicative Noise -- 5.8 The Poisson Process -- 5.9 Stochastic Differential Equation Driven by Random Telegraph Noise -- 6. The Electromagnetic Field -- 6.1 Free Classical Field -- 6.2 Field Quantization -- 6.3 Statistical Properties of Classical Field -- 6.4 Statistical Properties of Quantized Field -- 6.5 Homodvned Detection -- 6.6 Spectrum -- 7. Atom-Field Interaction Hamiltonians -- 7.1 Dipole Interaction -- 7.2 Rotating Wave and Resonance Approximations -- 7.3 Two-Level Atom -- 7.4 Three-Level Atom -- 7.5 Effective Two-Level Atom -- 7.6 Multi-channel Models -- 7.7 Parametric Processes -- 7.8 Cavity QED -- 7.9 Moving Atom -- 8. Quantum Theory of Damping -- 8.1 The Master Equation -- 8.2 Solving a Master Equation -- 8.3 Multi-Time Average of System Operators -- 8.4 Bath of Harmonic Oscillators -- 8.5 Master Equation for a Harmonic Oscillator -- 8.6 Master Equation for Two-Level Atoms -- 8.7 aster Equation for a Three-Level Atom -- 8.8 Master Equation for Field Interacting with a Reservoir of Atoms -- 9. Linear and Nonlinear Response of a System in an External Field -- 9.1 Steady State of a System in an External Field -- 9.2 Optical Susceptibility -- 9.3 Rate of Absorption of Energy -- 9.4 Response in a Fluctuating Field -- 10. Solution of Linear Equations: Method of Eigenvector Expansion -- 10.1 Eigenvalues and Eigenvectors -- 10.2 Generalized Eigenvalues and Eigenvectors -- 10.3 Solution of Two-Term Difference-Differential Equation -- 10.4 Exactly Solvable Two- and Three-Term Recursion Relations -- 11. Two-Level and Three-Level Hamiltonian Systems -- 11.1 Exactly Solvable Two-Level Systems -- 11.2 N Two-Level Atoms in a Quantized Field -- 11.3 Exactly Solvable Three-Level Systems -- 11.4 Effective Two-Level Approximation -- 12. Dissipative Atomic Systems -- 12.1 Two-Level Atom in a Quasimonochromatic Field -- 12.2 N Two-Level Atoms in a Monochromatic Field -- 12.3 Two-Level Atoms in a Fluctuating Field -- 12.4 Driven Three-Level Atom -- 13. Dissipative Field Dynamics -- 13.1 Down-Conversion in a Damped Cavity -- 13.2 Field Interacting with a Two-Photon Reservoir -- 13.3 Reservoir in the Lambda Configuration -- 14. Dissipative Cavity QED -- 14.1 Two-Level Atoms in a Single-Mode Cavity -- 14.2 Strong Atom-Field Coupling -- 14.3 Response to an External Field -- 14.4 The Micromaser -- Appendices -- A. Some Mathematical Formulae -- B. Hypergeometric Equation -- C. Solution of Twoand Three-Dimensional Linear Equations -- D. Roots of a Polynomial -- References. 
520 |a This book provides an accessible introduction to the mathematical methods of quantum optics. Starting from first principles, it reveals how a given system of atoms and a field is mathematically modelled. The method of eigenfunction expansion and the Lie algebraic method for solving equations are outlined. Analytically exactly solvable classes of equations are identified. The text also discusses consequences of Lie algebraic properties of Hamiltonians, such as the classification of their states as coherent, classical or non-classical based on the generalized uncertainty relation and the concept of quasiprobability distributions. A unified approach is developed for determining the dynamics of a two-level and a three-level atom interacting with combinations of quantized fields under certain conditions. Simple methods for solving a variety of linear and nonlinear dissipative master equations are given. The book will be valuable to newcomers to the field and to experimentalists in quantum optics. 
650 0 |a Quantum optics. 
650 0 |a Physics. 
650 0 |a Lasers. 
650 0 |a Photonics. 
650 0 |a Mathematical physics. 
650 1 4 |a Quantum Optics.  |0 http://scigraph.springernature.com/things/product-market-codes/P24050 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Optics, Lasers, Photonics, Optical Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/P31030 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
650 2 4 |a Numerical and Computational Physics, Simulation.  |0 http://scigraph.springernature.com/things/product-market-codes/P19021 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642087325 
776 0 8 |i Printed edition:  |z 9783540678021 
776 0 8 |i Printed edition:  |z 9783642536151 
830 0 |a Springer Series in Optical Sciences,  |x 0342-4111 ;  |v 79 
856 4 0 |u https://doi.org/10.1007/978-3-540-44953-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-BAE 
950 |a Physics and Astronomy (Springer-11651)