Mathematical Methods of Quantum Optics

This book provides an accessible introduction to the mathematical methods of quantum optics. Starting from first principles, it reveals how a given system of atoms and a field is mathematically modelled. The method of eigenfunction expansion and the Lie algebraic method for solving equations are out...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Puri, Ravinder R. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Springer Series in Optical Sciences, 79
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Basic Quantum Mechanics
  • 1.1 Postulates of Quantum Mechanics
  • 1.2 Geometric Phase
  • 1.3 Time-Dependent Approximation Method
  • 1.4 Quantum Mechanics of a Composite System
  • 1.5 Quantum Mechanics of a Subsystem and Density Operator
  • 1.6 Systems of One and Two Spin-1/2s
  • 1.7 Wave-Particle Duality
  • 1.8 Measurement Postulate and Paradoxes of Quantum Theory
  • 1.9 Local Hidden Variables Theory
  • 2. Algebra of the Exponential Operator
  • 2.1 Parametric Differentiation of the Exponential
  • 2.2 Exponential of a Finite-Dimensional Operator
  • 2.3 Lie Algebraic Similarity Transformations
  • 2.4 Disentangling an Exponential
  • 2.5 Time-Ordered Exponential Integral
  • 3. Representations of Some Lie Algebras
  • 3.1 Representation by Eigenvectors and Group Parameters
  • 3.2 Representations of Harmonic Oscillator Algebra
  • 3.3 Representations of SU(2)
  • 3.4 Representations of SU(1, 1)
  • 4. Quasiprobabilities and Non-classical States
  • 4.1 Phase Space Distribution Functions
  • 4.2 Phase Space Representation of Spins
  • 4.3 Quasiprobabilitiy Distributions for Eigenvalues of Spin Components
  • 4.4 Classical and Non-classical States
  • 5. Theory of Stochastic Processes
  • 5.1 Probability Distributions
  • 5.2 Markov Processes
  • 5.3 Detailed Balance
  • 5.4 Liouville and Fokker-Planck Equations
  • 5.5 Stochastic Differential Equations
  • 5.6 Linear Equations with Additive Noise
  • 5.7 Linear Equations with Multiplicative Noise
  • 5.8 The Poisson Process
  • 5.9 Stochastic Differential Equation Driven by Random Telegraph Noise
  • 6. The Electromagnetic Field
  • 6.1 Free Classical Field
  • 6.2 Field Quantization
  • 6.3 Statistical Properties of Classical Field
  • 6.4 Statistical Properties of Quantized Field
  • 6.5 Homodvned Detection
  • 6.6 Spectrum
  • 7. Atom-Field Interaction Hamiltonians
  • 7.1 Dipole Interaction
  • 7.2 Rotating Wave and Resonance Approximations
  • 7.3 Two-Level Atom
  • 7.4 Three-Level Atom
  • 7.5 Effective Two-Level Atom
  • 7.6 Multi-channel Models
  • 7.7 Parametric Processes
  • 7.8 Cavity QED
  • 7.9 Moving Atom
  • 8. Quantum Theory of Damping
  • 8.1 The Master Equation
  • 8.2 Solving a Master Equation
  • 8.3 Multi-Time Average of System Operators
  • 8.4 Bath of Harmonic Oscillators
  • 8.5 Master Equation for a Harmonic Oscillator
  • 8.6 Master Equation for Two-Level Atoms
  • 8.7 aster Equation for a Three-Level Atom
  • 8.8 Master Equation for Field Interacting with a Reservoir of Atoms
  • 9. Linear and Nonlinear Response of a System in an External Field
  • 9.1 Steady State of a System in an External Field
  • 9.2 Optical Susceptibility
  • 9.3 Rate of Absorption of Energy
  • 9.4 Response in a Fluctuating Field
  • 10. Solution of Linear Equations: Method of Eigenvector Expansion
  • 10.1 Eigenvalues and Eigenvectors
  • 10.2 Generalized Eigenvalues and Eigenvectors
  • 10.3 Solution of Two-Term Difference-Differential Equation
  • 10.4 Exactly Solvable Two- and Three-Term Recursion Relations
  • 11. Two-Level and Three-Level Hamiltonian Systems
  • 11.1 Exactly Solvable Two-Level Systems
  • 11.2 N Two-Level Atoms in a Quantized Field
  • 11.3 Exactly Solvable Three-Level Systems
  • 11.4 Effective Two-Level Approximation
  • 12. Dissipative Atomic Systems
  • 12.1 Two-Level Atom in a Quasimonochromatic Field
  • 12.2 N Two-Level Atoms in a Monochromatic Field
  • 12.3 Two-Level Atoms in a Fluctuating Field
  • 12.4 Driven Three-Level Atom
  • 13. Dissipative Field Dynamics
  • 13.1 Down-Conversion in a Damped Cavity
  • 13.2 Field Interacting with a Two-Photon Reservoir
  • 13.3 Reservoir in the Lambda Configuration
  • 14. Dissipative Cavity QED
  • 14.1 Two-Level Atoms in a Single-Mode Cavity
  • 14.2 Strong Atom-Field Coupling
  • 14.3 Response to an External Field
  • 14.4 The Micromaser
  • Appendices
  • A. Some Mathematical Formulae
  • B. Hypergeometric Equation
  • C. Solution of Twoand Three-Dimensional Linear Equations
  • D. Roots of a Polynomial
  • References.