Multiple Classifier Systems First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kittler, Josef (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Roli, Fabio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Computer Science, 1857
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05138nam a2200577 4500
001 978-3-540-45014-6
003 DE-He213
005 20191022111557.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540450146  |9 978-3-540-45014-6 
024 7 |a 10.1007/3-540-45014-9  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
245 1 0 |a Multiple Classifier Systems  |h [electronic resource] :  |b First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 Proceedings /  |c edited by Josef Kittler, Fabio Roli. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a XII, 408 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 1857 
505 0 |a Ensemble Methods in Machine Learning -- Experiments with Classifier Combining Rules -- The "Test and Select" Approach to Ensemble Combination -- A Survey of Sequential Combination of Word Recognizers in Handwritten Phrase Recognition at CEDAR -- Multiple Classifier Combination Methodologies for Different Output Levels -- A Mathematically Rigorous Foundation for Supervised Learning -- Classifier Combinations: Implementations and Theoretical Issues -- Some Results on Weakly Accurate Base Learners for Boosting Regression and Classification -- Complexity of Classification Problems and Comparative Advantages of Combined Classifiers -- Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems -- Combining Fisher Linear Discriminants for Dissimilarity Representations -- A Learning Method of Feature Selection for Rough Classification -- Analysis of a Fusion Method for Combining Marginal Classifiers -- A hybrid projection based and radial basis function architecture -- Combining Multiple Classifiers in Probabilistic Neural Networks -- Supervised Classifier Combination through Generalized Additive Multi-model -- Dynamic Classifier Selection -- Boosting in Linear Discriminant Analysis -- Different Ways of Weakening Decision Trees and Their Impact on Classification Accuracy of DT Combination -- Applying Boosting to Similarity Literals for Time Series Classification -- Boosting of Tree-Based Classifiers for Predictive Risk Modeling in GIS -- A New Evaluation Method for Expert Combination in Multi-expert System Designing -- Diversity between Neural Networks and Decision Trees for Building Multiple Classifier Systems -- Self-Organizing Decomposition of Functions -- Classifier Instability and Partitioning -- A Hierarchical Multiclassifier System for Hyperspectral Data Analysis -- Consensus Based Classification of Multisource Remote Sensing Data -- Combining Parametric and Nonparametric Classifiers for an Unsupervised Updating of Land-Cover Maps -- A Multiple Self-Organizing Map Scheme for Remote Sensing Classification -- Use of Lexicon Density in Evaluating Word Recognizers -- A Multi-expert System for Dynamic Signature Verification -- A Cascaded Multiple Expert System for Verification -- Architecture for Classifier Combination Using Entropy Measures -- Combining Fingerprint Classifiers -- Statistical Sensor Calibration for Fusion of Different Classifiers in a Biometric Person Recognition Framework -- A Modular Neuro-Fuzzy Network for Musical Instruments Classification -- Classifier Combination for Grammar-Guided Sentence Recognition -- Shape Matching and Extraction by an Array of Figure-and-Ground Classifiers. 
650 0 |a Pattern recognition. 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Algorithms. 
650 0 |a Computers. 
650 1 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
700 1 |a Kittler, Josef.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Roli, Fabio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662168264 
776 0 8 |i Printed edition:  |z 9783540677048 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 1857 
856 4 0 |u https://doi.org/10.1007/3-540-45014-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)