Learning Classifier Systems From Foundations to Applications /

Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lanzi, Pier L. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Stolzmann, Wolfgang (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Wilson, Stewart W. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Artificial Intelligence ; 1813
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04282nam a2200541 4500
001 978-3-540-45027-6
003 DE-He213
005 20191024191615.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540450276  |9 978-3-540-45027-6 
024 7 |a 10.1007/3-540-45027-0  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Learning Classifier Systems  |h [electronic resource] :  |b From Foundations to Applications /  |c edited by Pier L. Lanzi, Wolfgang Stolzmann, Stewart W. Wilson. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a X, 354 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 1813 
505 0 |a Basics -- What Is a Learning Classifier System? -- A Roadmap to the Last Decade of Learning Classifier System Research (From 1989 to 1999) -- State of XCS Classifier System Research -- An Introduction to Learning Fuzzy Classifier Systems -- Advanced Topics -- Fuzzy and Crisp Representations of Real-Valued Input for Learning Classifier Systems -- Do We Really Need to Estimate Rule Utilities in Classifier Systems? -- Strength or Accuracy? Fitness Calculation in Learning Classifier Systems -- Non-homogeneous Classifier Systems in a Macro-evolution Process -- An Introduction to Anticipatory Classifier Systems -- A Corporate XCS -- Get Real! XCS with Continuous-Valued Inputs -- Applications -- XCS and the Monk's Problems -- Learning Classifier Systems Applied to Knowledge Discovery in Clinical Research Databases -- An Adaptive Agent Based Economic Model -- The Fighter Aircraft LCS: A Case of Different LCS Goals and Techniques -- Latent Learning and Action Planning in Robots with Anticipatory Classifier Systems -- The Bibliography -- A Learning Classifier Systems Bibliography. 
520 |a Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical logic. 
650 0 |a Computers. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
700 1 |a Lanzi, Pier L.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stolzmann, Wolfgang.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wilson, Stewart W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662172186 
776 0 8 |i Printed edition:  |z 9783540677291 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 1813 
856 4 0 |u https://doi.org/10.1007/3-540-45027-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)