Machine Learning and Data Mining in Pattern Recognition Third International Conference, MLDM 2003 Leipzig, Germany, July 5–7, 2003 Proceedings /

TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Perner, Petra (Επιμελητής έκδοσης), Rosenfeld, Azriel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2003.
Σειρά:Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, 2734
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06836nam a22006135i 4500
001 978-3-540-45065-8
003 DE-He213
005 20151123193004.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540450658  |9 978-3-540-45065-8 
024 7 |a 10.1007/3-540-45065-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning and Data Mining in Pattern Recognition  |h [electronic resource] :  |b Third International Conference, MLDM 2003 Leipzig, Germany, July 5–7, 2003 Proceedings /  |c edited by Petra Perner, Azriel Rosenfeld. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2003. 
300 |a XII, 444 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence,  |x 0302-9743 ;  |v 2734 
505 0 |a Invited Talkes -- Introspective Learning to Build Case-Based Reasoning (CBR) Knowledge Containers -- Graph-Based Tools for Data Mining and Machine Learning -- Decision Trees -- Simplification Methods for Model Trees with Regression and Splitting Nodes -- Learning Multi-label Alternating Decision Trees from Texts and Data -- Khiops: A Discretization Method of Continuous Attributes with Guaranteed Resistance to Noise -- On the Size of a Classification Tree -- Clustering and Its Applications -- A Comparative Analysis of Clustering Algorithms Applied to Load Profiling -- Similarity-Based Clustering of Sequences Using Hidden Markov Models -- Support Vector Machines -- A Fast Parallel Optimization for Training Support Vector Machine -- A ROC-Based Reject Rule for Support Vector Machines -- Case-Based Reasoning -- Remembering Similitude Terms in CBR -- Authoring Cases from Free-Text Maintenance Data -- Classification, Retrieval, and Feature Learning -- Classification Boundary Approximation by Using Combination of Training Steps for Real-Time Image Segmentation -- Simple Mimetic Classifiers -- Novel Mixtures Based on the Dirichlet Distribution: Application to Data and Image Classification -- Estimating a Quality of Decision Function by Empirical Risk -- Efficient Locally Linear Embeddings of Imperfect Manifolds -- Dissimilarity Representation of Images for Relevance Feedback in Content-Based Image Retrieval -- A Rule-Based Scheme for Filtering Examples from Majority Class in an Imbalanced Training Set -- Coevolutionary Feature Learning for Object Recognition -- Discovery of Frequently or Sequential Patterns -- Generalization of Pattern-Growth Methods for Sequential Pattern Mining with Gap Constraints -- Discover Motifs in Multi-dimensional Time-Series Using the Principal Component Analysis and the MDL Principle -- Optimizing Financial Portfolios from the Perspective of Mining Temporal Structures of Stock Returns -- Visualizing Sequences of Texts Using Collocational Networks -- Complexity Analysis of Depth First and FP-Growth Implementations of APRIORI -- Bayesian Models and Methods -- GO-SPADE: Mining Sequential Patterns over Datasets with Consecutive Repetitions -- Using Test Plans for Bayesian Modeling -- Using Bayesian Networks to Analyze Medical Data -- A Belief Networks-Based Generative Model for Structured Documents. An Application to the XML Categorization -- Neural Self-Organization Using Graphs -- Association Rules Mining -- Integrating Fuzziness with OLAP Association Rules Mining -- Discovering Association Patterns Based on Mutual Information -- Applications -- Connectionist Probability Estimators in HMM Arabic Speech Recognition Using Fuzzy Logic -- Shape Recovery from an Unorganized Image Sequence -- A Learning Autonomous Driver System on the Basis of Image Classification and Evolutional Learning -- Detecting the Boundary Curve of Planar Random Point Set -- A Machine Learning Model for Information Retrieval with Structured Documents. 
520 |a TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference. 
650 0 |a Computer science. 
650 0 |a Mathematical logic. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
700 1 |a Perner, Petra.  |e editor. 
700 1 |a Rosenfeld, Azriel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540405047 
830 0 |a Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence,  |x 0302-9743 ;  |v 2734 
856 4 0 |u http://dx.doi.org/10.1007/3-540-45065-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)