Second Order PDE's in Finite and Infinite Dimension A Probabilistic Approach /

The main objective of this monograph is the study of a class of stochastic differential systems having unbounded coefficients, both in finite and in infinite dimension. We focus our attention on the regularity properties of the solutions and hence on the smoothing effect of the corresponding transit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cerrai, Sandra (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Mathematics, 1762
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03633nam a2200493 4500
001 978-3-540-45147-1
003 DE-He213
005 20191026022708.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540451471  |9 978-3-540-45147-1 
024 7 |a 10.1007/b80743  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Cerrai, Sandra.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Second Order PDE's in Finite and Infinite Dimension  |h [electronic resource] :  |b A Probabilistic Approach /  |c by Sandra Cerrai. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a XII, 332 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1762 
505 0 |a Kolmogorov equations in Rd with unbounded coefficients -- Asymptotic behaviour of solutions -- Analyticity of the semigroup in a degenerate case -- Smooth dependence on data for the SPDE: the Lipschitz case -- Kolmogorov equations in Hilbert spaces -- Smooth dependence on data for the SPDE: the non-Lipschitz case (I) -- Smooth dependence on data for the SPDE: the non-Lipschitz case (II) -- Ergodicity -- Hamilton- Jacobi-Bellman equations in Hilbert spaces -- Application to stochastic optimal control problems. 
520 |a The main objective of this monograph is the study of a class of stochastic differential systems having unbounded coefficients, both in finite and in infinite dimension. We focus our attention on the regularity properties of the solutions and hence on the smoothing effect of the corresponding transition semigroups in the space of bounded and uniformly continuous functions. As an application of these results, we study the associated Kolmogorov equations, the large-time behaviour of the solutions and some stochastic optimal control problems together with the corresponding Hamilton- Jacobi-Bellman equations. In the literature there exists a large number of works (mostly in finite dimen­ sion) dealing with these arguments in the case of bounded Lipschitz-continuous coefficients and some of them concern the case of coefficients having linear growth. Few papers concern the case of non-Lipschitz coefficients, but they are mainly re­ lated to the study of the existence and the uniqueness of solutions for the stochastic system. Actually, the study of any further properties of those systems, such as their regularizing properties or their ergodicity, seems not to be developed widely enough. With these notes we try to cover this gap. 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662200377 
776 0 8 |i Printed edition:  |z 9783540421368 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1762 
856 4 0 |u https://doi.org/10.1007/b80743  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)