|
|
|
|
LEADER |
05663nam a2200541 4500 |
001 |
978-3-540-45167-9 |
003 |
DE-He213 |
005 |
20191022041402.0 |
007 |
cr nn 008mamaa |
008 |
121227s2003 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540451679
|9 978-3-540-45167-9
|
024 |
7 |
|
|a 10.1007/b12006
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a Q334-342
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
1 |
0 |
|a Learning Theory and Kernel Machines
|h [electronic resource] :
|b 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings /
|c edited by Bernhard Schölkopf, Manfred K. Warmuth.
|
250 |
|
|
|a 1st ed. 2003.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2003.
|
300 |
|
|
|a XIV, 754 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Artificial Intelligence ;
|v 2777
|
505 |
0 |
|
|a Target Area: Computational Game Theory -- Tutorial: Learning Topics in Game-Theoretic Decision Making -- A General Class of No-Regret Learning Algorithms and Game-Theoretic Equilibria -- Preference Elicitation and Query Learning -- Efficient Algorithms for Online Decision Problems -- Positive Definite Rational Kernels -- Bhattacharyya and Expected Likelihood Kernels -- Maximal Margin Classification for Metric Spaces -- Maximum Margin Algorithms with Boolean Kernels -- Knowledge-Based Nonlinear Kernel Classifiers -- Fast Kernels for Inexact String Matching -- On Graph Kernels: Hardness Results and Efficient Alternatives -- Kernels and Regularization on Graphs -- Data-Dependent Bounds for Multi-category Classification Based on Convex Losses -- Poster Session 1 -- Comparing Clusterings by the Variation of Information -- Multiplicative Updates for Large Margin Classifiers -- Simplified PAC-Bayesian Margin Bounds -- Sparse Kernel Partial Least Squares Regression -- Sparse Probability Regression by Label Partitioning -- Learning with Rigorous Support Vector Machines -- Robust Regression by Boosting the Median -- Boosting with Diverse Base Classifiers -- Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming -- Optimal Rates of Aggregation -- Distance-Based Classification with Lipschitz Functions -- Random Subclass Bounds -- PAC-MDL Bounds -- Universal Well-Calibrated Algorithm for On-Line Classification -- Learning Probabilistic Linear-Threshold Classifiers via Selective Sampling -- Learning Algorithms for Enclosing Points in Bregmanian Spheres -- Internal Regret in On-Line Portfolio Selection -- Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem -- Smooth ?-Insensitive Regression by Loss Symmetrization -- On Finding Large Conjunctive Clusters -- Learning Arithmetic Circuits via Partial Derivatives -- Poster Session 2 -- Using a Linear Fit to Determine Monotonicity Directions -- Generalization Bounds for Voting Classifiers Based on Sparsity and Clustering -- Sequence Prediction Based on Monotone Complexity -- How Many Strings Are Easy to Predict? -- Polynomial Certificates for Propositional Classes -- On-Line Learning with Imperfect Monitoring -- Exploiting Task Relatedness for Multiple Task Learning -- Approximate Equivalence of Markov Decision Processes -- An Information Theoretic Tradeoff between Complexity and Accuracy -- Learning Random Log-Depth Decision Trees under the Uniform Distribution -- Projective DNF Formulae and Their Revision -- Learning with Equivalence Constraints and the Relation to Multiclass Learning -- Target Area: Natural Language Processing -- Tutorial: Machine Learning Methods in Natural Language Processing -- Learning from Uncertain Data -- Learning and Parsing Stochastic Unification-Based Grammars -- Generality's Price -- On Learning to Coordinate -- Learning All Subfunctions of a Function -- When Is Small Beautiful? -- Learning a Function of r Relevant Variables -- Subspace Detection: A Robust Statistics Formulation -- How Fast Is k-Means? -- Universal Coding of Zipf Distributions -- An Open Problem Regarding the Convergence of Universal A Priori Probability -- Entropy Bounds for Restricted Convex Hulls -- Compressing to VC Dimension Many Points.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Computers.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Mathematical logic.
|
650 |
1 |
4 |
|a Artificial Intelligence.
|0 http://scigraph.springernature.com/things/product-market-codes/I21000
|
650 |
2 |
4 |
|a Computation by Abstract Devices.
|0 http://scigraph.springernature.com/things/product-market-codes/I16013
|
650 |
2 |
4 |
|a Algorithm Analysis and Problem Complexity.
|0 http://scigraph.springernature.com/things/product-market-codes/I16021
|
650 |
2 |
4 |
|a Mathematical Logic and Formal Languages.
|0 http://scigraph.springernature.com/things/product-market-codes/I16048
|
700 |
1 |
|
|a Schölkopf, Bernhard.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Warmuth, Manfred K.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662164792
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540407201
|
830 |
|
0 |
|a Lecture Notes in Artificial Intelligence ;
|v 2777
|
856 |
4 |
0 |
|u https://doi.org/10.1007/b12006
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-LNC
|
912 |
|
|
|a ZDB-2-BAE
|
950 |
|
|
|a Computer Science (Springer-11645)
|