Learning Theory and Kernel Machines 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Schölkopf, Bernhard (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Warmuth, Manfred K. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Artificial Intelligence ; 2777
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05663nam a2200541 4500
001 978-3-540-45167-9
003 DE-He213
005 20191022041402.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540451679  |9 978-3-540-45167-9 
024 7 |a 10.1007/b12006  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Learning Theory and Kernel Machines  |h [electronic resource] :  |b 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings /  |c edited by Bernhard Schölkopf, Manfred K. Warmuth. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XIV, 754 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 2777 
505 0 |a Target Area: Computational Game Theory -- Tutorial: Learning Topics in Game-Theoretic Decision Making -- A General Class of No-Regret Learning Algorithms and Game-Theoretic Equilibria -- Preference Elicitation and Query Learning -- Efficient Algorithms for Online Decision Problems -- Positive Definite Rational Kernels -- Bhattacharyya and Expected Likelihood Kernels -- Maximal Margin Classification for Metric Spaces -- Maximum Margin Algorithms with Boolean Kernels -- Knowledge-Based Nonlinear Kernel Classifiers -- Fast Kernels for Inexact String Matching -- On Graph Kernels: Hardness Results and Efficient Alternatives -- Kernels and Regularization on Graphs -- Data-Dependent Bounds for Multi-category Classification Based on Convex Losses -- Poster Session 1 -- Comparing Clusterings by the Variation of Information -- Multiplicative Updates for Large Margin Classifiers -- Simplified PAC-Bayesian Margin Bounds -- Sparse Kernel Partial Least Squares Regression -- Sparse Probability Regression by Label Partitioning -- Learning with Rigorous Support Vector Machines -- Robust Regression by Boosting the Median -- Boosting with Diverse Base Classifiers -- Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming -- Optimal Rates of Aggregation -- Distance-Based Classification with Lipschitz Functions -- Random Subclass Bounds -- PAC-MDL Bounds -- Universal Well-Calibrated Algorithm for On-Line Classification -- Learning Probabilistic Linear-Threshold Classifiers via Selective Sampling -- Learning Algorithms for Enclosing Points in Bregmanian Spheres -- Internal Regret in On-Line Portfolio Selection -- Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem -- Smooth ?-Insensitive Regression by Loss Symmetrization -- On Finding Large Conjunctive Clusters -- Learning Arithmetic Circuits via Partial Derivatives -- Poster Session 2 -- Using a Linear Fit to Determine Monotonicity Directions -- Generalization Bounds for Voting Classifiers Based on Sparsity and Clustering -- Sequence Prediction Based on Monotone Complexity -- How Many Strings Are Easy to Predict? -- Polynomial Certificates for Propositional Classes -- On-Line Learning with Imperfect Monitoring -- Exploiting Task Relatedness for Multiple Task Learning -- Approximate Equivalence of Markov Decision Processes -- An Information Theoretic Tradeoff between Complexity and Accuracy -- Learning Random Log-Depth Decision Trees under the Uniform Distribution -- Projective DNF Formulae and Their Revision -- Learning with Equivalence Constraints and the Relation to Multiclass Learning -- Target Area: Natural Language Processing -- Tutorial: Machine Learning Methods in Natural Language Processing -- Learning from Uncertain Data -- Learning and Parsing Stochastic Unification-Based Grammars -- Generality's Price -- On Learning to Coordinate -- Learning All Subfunctions of a Function -- When Is Small Beautiful? -- Learning a Function of r Relevant Variables -- Subspace Detection: A Robust Statistics Formulation -- How Fast Is k-Means? -- Universal Coding of Zipf Distributions -- An Open Problem Regarding the Convergence of Universal A Priori Probability -- Entropy Bounds for Restricted Convex Hulls -- Compressing to VC Dimension Many Points. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Mathematical logic. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
700 1 |a Schölkopf, Bernhard.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Warmuth, Manfred K.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662164792 
776 0 8 |i Printed edition:  |z 9783540407201 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 2777 
856 4 0 |u https://doi.org/10.1007/b12006  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)