Learning Theory and Kernel Machines 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Schölkopf, Bernhard (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Warmuth, Manfred K. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Artificial Intelligence ; 2777
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Target Area: Computational Game Theory
  • Tutorial: Learning Topics in Game-Theoretic Decision Making
  • A General Class of No-Regret Learning Algorithms and Game-Theoretic Equilibria
  • Preference Elicitation and Query Learning
  • Efficient Algorithms for Online Decision Problems
  • Positive Definite Rational Kernels
  • Bhattacharyya and Expected Likelihood Kernels
  • Maximal Margin Classification for Metric Spaces
  • Maximum Margin Algorithms with Boolean Kernels
  • Knowledge-Based Nonlinear Kernel Classifiers
  • Fast Kernels for Inexact String Matching
  • On Graph Kernels: Hardness Results and Efficient Alternatives
  • Kernels and Regularization on Graphs
  • Data-Dependent Bounds for Multi-category Classification Based on Convex Losses
  • Poster Session 1
  • Comparing Clusterings by the Variation of Information
  • Multiplicative Updates for Large Margin Classifiers
  • Simplified PAC-Bayesian Margin Bounds
  • Sparse Kernel Partial Least Squares Regression
  • Sparse Probability Regression by Label Partitioning
  • Learning with Rigorous Support Vector Machines
  • Robust Regression by Boosting the Median
  • Boosting with Diverse Base Classifiers
  • Reducing Kernel Matrix Diagonal Dominance Using Semi-definite Programming
  • Optimal Rates of Aggregation
  • Distance-Based Classification with Lipschitz Functions
  • Random Subclass Bounds
  • PAC-MDL Bounds
  • Universal Well-Calibrated Algorithm for On-Line Classification
  • Learning Probabilistic Linear-Threshold Classifiers via Selective Sampling
  • Learning Algorithms for Enclosing Points in Bregmanian Spheres
  • Internal Regret in On-Line Portfolio Selection
  • Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem
  • Smooth ?-Insensitive Regression by Loss Symmetrization
  • On Finding Large Conjunctive Clusters
  • Learning Arithmetic Circuits via Partial Derivatives
  • Poster Session 2
  • Using a Linear Fit to Determine Monotonicity Directions
  • Generalization Bounds for Voting Classifiers Based on Sparsity and Clustering
  • Sequence Prediction Based on Monotone Complexity
  • How Many Strings Are Easy to Predict?
  • Polynomial Certificates for Propositional Classes
  • On-Line Learning with Imperfect Monitoring
  • Exploiting Task Relatedness for Multiple Task Learning
  • Approximate Equivalence of Markov Decision Processes
  • An Information Theoretic Tradeoff between Complexity and Accuracy
  • Learning Random Log-Depth Decision Trees under the Uniform Distribution
  • Projective DNF Formulae and Their Revision
  • Learning with Equivalence Constraints and the Relation to Multiclass Learning
  • Target Area: Natural Language Processing
  • Tutorial: Machine Learning Methods in Natural Language Processing
  • Learning from Uncertain Data
  • Learning and Parsing Stochastic Unification-Based Grammars
  • Generality's Price
  • On Learning to Coordinate
  • Learning All Subfunctions of a Function
  • When Is Small Beautiful?
  • Learning a Function of r Relevant Variables
  • Subspace Detection: A Robust Statistics Formulation
  • How Fast Is k-Means?
  • Universal Coding of Zipf Distributions
  • An Open Problem Regarding the Convergence of Universal A Priori Probability
  • Entropy Bounds for Restricted Convex Hulls
  • Compressing to VC Dimension Many Points.