Hierarchical Neural Networks for Image Interpretation
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in lim...
Κύριος συγγραφέας: | Behnke, Sven (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2003.
|
Έκδοση: | 1st ed. 2003. |
Σειρά: | Lecture Notes in Computer Science,
2766 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Emergent Neural Computational Architectures Based on Neuroscience Towards Neuroscience-Inspired Computing /
Έκδοση: (2001) -
Artificial Neural Networks - ICANN 2001 International Conference Vienna, Austria, August 21-25, 2001 Proceedings /
Έκδοση: (2001) -
Artificial Neural Networks - ICANN 2002 International Conference, Madrid, Spain, August 28-30, 2002. Proceedings /
Έκδοση: (2002) -
Artificial Evolution Third European Conference, AE '97, Nimes, France, October 22-24, 1997, Selected Papers /
Έκδοση: (1998) -
Multiple Classifier Systems Second International Workshop, MCS 2001 Cambridge, UK, July 2-4, 2001 Proceedings /
Έκδοση: (2001)