Hierarchical Neural Networks for Image Interpretation
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in lim...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2003.
|
Έκδοση: | 1st ed. 2003. |
Σειρά: | Lecture Notes in Computer Science,
2766 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- I. Theory
- Neurobiological Background
- Related Work
- Neural Abstraction Pyramid Architecture
- Unsupervised Learning
- Supervised Learning
- II. Applications
- Recognition of Meter Values
- Binarization of Matrix Codes
- Learning Iterative Image Reconstruction
- Face Localization
- Summary and Conclusions.