Scattering Theory: Some Old and New Problems

Scattering theory is, roughly speaking, perturbation theory of self-adjoint operators on the (absolutely) continuous spectrum. It has its origin in mathematical problems of quantum mechanics and is intimately related to the theory of partial differential equations. Some recently solved problems, suc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Yafaev, Dmitri R. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Mathematics, 1735
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03790nam a2200577 4500
001 978-3-540-45170-9
003 DE-He213
005 20191024193348.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540451709  |9 978-3-540-45170-9 
024 7 |a 10.1007/BFb0105531  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Yafaev, Dmitri R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Scattering Theory: Some Old and New Problems  |h [electronic resource] /  |c by Dmitri R. Yafaev. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a XVI, 176 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1735 
505 0 |a Basic concepts -- Short-range interactions. asymptotic completeness -- Short-range interactions. Miscellaneous -- Long-range interactions. The scheme of smooth perturbations -- The generalized fourier transform -- Long-range matrix potentials -- A stationary representation -- The short-range case -- The long-range case -- The relative scattering matrix -- Setting the scattering problem -- Resolvent equations for three-particle systems -- Asymptotic completeness. A sketch of proof -- The scattering matrix and eigenfunctions for multiparticle systems -- New channels of scattering -- The heisenberg model -- Infinite obstacle scattering. 
520 |a Scattering theory is, roughly speaking, perturbation theory of self-adjoint operators on the (absolutely) continuous spectrum. It has its origin in mathematical problems of quantum mechanics and is intimately related to the theory of partial differential equations. Some recently solved problems, such as asymptotic completeness for the Schrödinger operator with long-range and multiparticle potentials, as well as open problems, are discussed. Potentials for which asymptotic completeness is violated are also constructed. This corresponds to a new class of asymptotic solutions of the time-dependent Schrödinger equation. Special attention is paid to the properties of the scattering matrix, which is the main observable of the theory. The book is addressed to readers interested in a deeper study of the subject. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Integral equations. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12007 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Integral Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12090 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662205273 
776 0 8 |i Printed edition:  |z 9783540675877 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1735 
856 4 0 |u https://doi.org/10.1007/BFb0105531  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)