Grammatical Inference: Algorithms and Applications 5th International Colloquium, ICGI 2000, Lisbon, Portugal, September 11-13, 2000 Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Oliveira, Arlindo L. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Artificial Intelligence ; 1891
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Inference of Finite-State Transducers by Using Regular Grammars and Morphisms
  • Computational Complexity of Problems on Probabilistic Grammars and Transducers
  • Efficient Ambiguity Detection in C-NFA
  • Learning Regular Languages Using Non Deterministic Finite Automata
  • Smoothing Probabilistic Automata: An Error-Correcting Approach
  • Inferring Subclasses of Contextual Languages
  • Permutations and Control Sets for Learning Non-regular Language Families
  • On the Complexity of Consistent Identification of Some Classes of Structure Languages
  • Computation of Substring Probabilities in Stochastic Grammars
  • A Comparative Study of Two Algorithms for Automata Identification
  • The Induction of Temporal Grammatical Rules from Multivariate Time Series
  • Identification in the Limit with Probability One of Stochastic Deterministic Finite Automata
  • Iterated Transductions and Efficient Learning from Positive Data: A Unifying View
  • An Inverse Limit of Context-Free Grammars - A New Approach to Identifiability in the Limit
  • Synthesizing Context Free Grammars from Sample Strings Based on Inductive CYK Algorithm
  • Combination of Estimation Algorithms and Grammatical Inference Techniques to Learn Stochastic Context-Free Grammars
  • On the Relationship between Models for Learning in Helpful Environments
  • Probabilistic k-Testable Tree Languages
  • Learning Context-Free Grammars from Partially Structured Examples
  • Identification of Tree Translation Rules from Examples
  • Counting Extensional Differences in BC-Learning
  • Constructive Learning of Context-Free Languages with a Subpansive Tree
  • A Polynomial Time Learning Algorithm of Simple Deterministic Languages via Membership Queries and a Representative Sample
  • Improve the Learning of Subsequential Transducers by Using Alignments and Dictionaries.