Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory

- of nonlinear the of solitons the the last 30 theory partial theory During years - has into solutions of a kind a differential special equations (PDEs) possessing grown and in view the attention of both mathematicians field that attracts physicists large and of the of the problems of its novelty pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zhidkov, Peter E. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Mathematics, 1756
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04105nam a2200493 4500
001 978-3-540-45276-8
003 DE-He213
005 20191025091901.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540452768  |9 978-3-540-45276-8 
024 7 |a 10.1007/3-540-45276-1  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Zhidkov, Peter E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory  |h [electronic resource] /  |c by Peter E. Zhidkov. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a X, 154 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1756 
505 0 |a Introduction -- Notation -- Evolutionary equations. Results on existance: The (generalized Korteweg-de Vries equation (KdVE); The nonlinear Schrödinger equation (NLSE); On the blowing up of solutions; Additional remarks -- Stationary problems: Existence of solutions. An ODE approach; Existence of solutions. A variational method; The concentration-compactness method of P.L. Lions; On basis properties of systems of solutions; Additional remarks -- Stability of solutions: Stability of soliton-like solutions; Stability of kinks for the KdVE; Stability of solutions of the NLSE nonvanishing as (x) to infinity; Additional remarks -- Invariant measures: On Gaussian measures in Hilbert spaces; An invariant measure for the NLSE; An infinite series of invariant measures for the KdVE; Additional remarks -- Bibliography -- Index. 
520 |a - of nonlinear the of solitons the the last 30 theory partial theory During years - has into solutions of a kind a differential special equations (PDEs) possessing grown and in view the attention of both mathematicians field that attracts physicists large and of the of the problems of its novelty problems. Physical important applications for in the under consideration are mo- to the observed, example, equations leading mathematical discoveries is the Makhankov One of the related V.G. by [60]. graph from this field methods that of certain nonlinear by equations possibility studying inverse these to the problem; equations were analyze quantum scattering developed this method of the inverse called solvable the scattering problem (on subject, are by known nonlinear At the the class of for same time, currently example [89,94]). see, the other there is solvable this method is narrow on hand, PDEs sufficiently and, by of differential The latter called the another qualitative theory equations. approach, the of various in includes on pr- investigations well-posedness approach particular solutions such or lems for these the behavior of as stability blowing-up, equations, these and this of approach dynamical systems generated by equations, etc., properties in wider class of a makes it to an problems (maybe possible investigate essentially more general study). 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662161739 
776 0 8 |i Printed edition:  |z 9783540418337 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1756 
856 4 0 |u https://doi.org/10.1007/3-540-45276-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)