Conformal Geometry of Surfaces in S4 and Quaternions
The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather...
Κύριοι συγγραφείς: | , , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2002.
|
Έκδοση: | 1st ed. 2002. |
Σειρά: | Lecture Notes in Mathematics,
1772 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Quaternions
- Linear algebra over the quaternions
- Projective spaces
- Vector bundles
- The mean curvature sphere
- Willmore Surfaces
- Metric and affine conformal geometry
- Twistor projections
- Bäcklund transforms of Willmore surfaces
- Willmore surfaces in S3
- Spherical Willmore surfaces in HP1
- Darboux transforms
- Appendix: The bundle L. Holomorphicity and the Ejiri theorem.