Conformal Geometry of Surfaces in S4 and Quaternions

The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Burstall, Francis E. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Ferus, Dirk (http://id.loc.gov/vocabulary/relators/aut), Leschke, Katrin (http://id.loc.gov/vocabulary/relators/aut), Pedit, Franz (http://id.loc.gov/vocabulary/relators/aut), Pinkall, Ulrich (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Mathematics, 1772
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Quaternions
  • Linear algebra over the quaternions
  • Projective spaces
  • Vector bundles
  • The mean curvature sphere
  • Willmore Surfaces
  • Metric and affine conformal geometry
  • Twistor projections
  • Bäcklund transforms of Willmore surfaces
  • Willmore surfaces in S3
  • Spherical Willmore surfaces in HP1
  • Darboux transforms
  • Appendix: The bundle L. Holomorphicity and the Ejiri theorem.