Characteristics Finite Element Methods in Computational Fluid Dynamics

This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. The fluid dynamics equations are derived from basic thermo-mechanical principles and the multi-dimensional and infinite-directional upstream procedure is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Iannelli, Joe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Computational Fluid and Solid Mechanics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03589nam a22005655i 4500
001 978-3-540-45343-7
003 DE-He213
005 20151204163551.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540453437  |9 978-3-540-45343-7 
024 7 |a 10.1007/978-3-540-45343-7  |2 doi 
040 |d GrThAP 
050 4 |a QC6.4.C6 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 531  |2 23 
100 1 |a Iannelli, Joe.  |e author. 
245 1 0 |a Characteristics Finite Element Methods in Computational Fluid Dynamics  |h [electronic resource] /  |c by Joe Iannelli. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XXVI, 730 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Fluid and Solid Mechanics,  |x 1860-482X 
505 0 |a Governing Equations of Fluid Mechanics -- Constitutive and State Equations -- State Equations for Reacting Air -- Euler and Navier Stokes Systems -- Quasi One-Dimensional and Free-Surface Equations -- Overview of CFD Algorithm Development -- The Finite Element Method -- Non-Linearly Stable Implicit Runge-Kutta Time Integrations -- One-Dimensional Non-Discrete Characteristics-Bias Resolution -- Characteristics-Bias Controller and Length -- Computational Analysis of Quasi-1-D Incompressible Flows -- Numerical Study of Generalized Quasi-1-D Free Surface Flows -- CFD Investigation of Generalized Quasi-1-D Compressible Flows -- Multi-Dimensional Characteristics and Characteristics-Bias Systems -- Multi-Dimensional Incompressible Flows -- Multi-Dimensional Free-Surface Flows -- Multi-Dimensional Compressible Flows. 
520 |a This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. The fluid dynamics equations are derived from basic thermo-mechanical principles and the multi-dimensional and infinite-directional upstream procedure is developed by combining a finite element discretization of a characteristics-bias system with an implicit Runge-Kutta time integration. For the computational solution of the Euler and Navier Stokes equations, the procedure relies on the mathematics and physics of multi-dimensional characteristics. As a result, the procedure crisply captures contact discontinuities, normal as well as oblique shocks, and generates essentially non-oscillatory solutions for incompressible, subsonic, transonic, supersonic, and hypersonic inviscid and viscous flows. 
650 0 |a Physics. 
650 0 |a Computer mathematics. 
650 0 |a Continuum physics. 
650 0 |a Fluids. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computational intelligence. 
650 0 |a Fluid mechanics. 
650 1 4 |a Physics. 
650 2 4 |a Classical Continuum Physics. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Computational Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540251811 
830 0 |a Computational Fluid and Solid Mechanics,  |x 1860-482X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-45343-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)