Multiple Classifier Systems Third International Workshop, MCS 2002, Cagliari, Italy, June 24-26, 2002. Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Roli, Fabio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Kittler, Josef (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Computer Science, 2364
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04885nam a2200565 4500
001 978-3-540-45428-1
003 DE-He213
005 20191220130926.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540454281  |9 978-3-540-45428-1 
024 7 |a 10.1007/3-540-45428-4  |2 doi 
040 |d GrThAP 
050 4 |a TK7885-7895 
072 7 |a UY  |2 bicssc 
072 7 |a COM059000  |2 bisacsh 
072 7 |a UY  |2 thema 
082 0 4 |a 621.39  |2 23 
245 1 0 |a Multiple Classifier Systems  |h [electronic resource] :  |b Third International Workshop, MCS 2002, Cagliari, Italy, June 24-26, 2002. Proceedings /  |c edited by Fabio Roli, Josef Kittler. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a X, 342 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2364 
505 0 |a Invited Papers -- Multiclassifier Systems: Back to the Future -- Support Vector Machines, Kernel Logistic Regression and Boosting -- Multiple Classification Systems in the Context of Feature Extraction and Selection -- Bagging and Boosting -- Boosted Tree Ensembles for Solving Multiclass Problems -- Distributed Pasting of Small Votes -- Bagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy -- Highlighting Hard Patterns via AdaBoost Weights Evolution -- Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse -- Ensemble Learning and Neural Networks -- Multistage Neural Network Ensembles -- Forward and Backward Selection in Regression Hybrid Network -- Types of Multinet System -- Discriminant Analysis and Factorial Multiple Splits in Recursive Partitioning for Data Mining -- Design Methodologies -- New Measure of Classifier Dependency in Multiple Classifier Systems -- A Discussion on the Classifier Projection Space for Classifier Combining -- On the General Application of the Tomographic Classifier Fusion Methodology -- Post-processing of Classifier Outputs in Multiple Classifier Systems -- Combination Strategies -- Trainable Multiple Classifier Schemes for Handwritten Character Recognition -- Generating Classifier Ensembles from Multiple Prototypes and Its Application to Handwriting Recognition -- Adaptive Feature Spaces for Land Cover Classification with Limited Ground Truth Data -- Stacking with Multi-response Model Trees -- On Combining One-Class Classifiers for Image Database Retrieval -- Analysis and Performance Evaluation -- Bias-Variance Analysis and Ensembles of SVM -- An Experimental Comparison of Fixed and Trained Fusion Rules for Crisp Classifier Outputs -- Reduction of the Boasting Bias of Linear Experts -- Analysis of Linear and Order Statistics Combiners for Fusion of Imbalanced Classifiers -- Applications -- Boosting and Classification of Electronic Nose Data -- Content-Based Classification of Digital Photos -- Classifier Combination for In Vivo Magnetic Resonance Spectra of Brain Tumours -- Combining Classifiers of Pesticides Toxicity through a Neuro-fuzzy Approach -- A Multi-expert System for Movie Segmentation -- Decision Level Fusion of Intramodal Personal Identity Verification Experts -- An Experimental Comparison of Classifier Fusion Rules for Multimodal Personal Identity Verification Systems. 
650 0 |a Computer engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Optical data processing. 
650 0 |a Algorithms. 
650 1 4 |a Computer Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/I27000 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
700 1 |a Roli, Fabio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kittler, Josef.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662165973 
776 0 8 |i Printed edition:  |z 9783540438182 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2364 
856 4 0 |u https://doi.org/10.1007/3-540-45428-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)