Computational Learning Theory 15th Annual Conference on Computational Learning Theory, COLT 2002, Sydney, Australia, July 8-10, 2002. Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kivinen, Jyrki (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Sloan, Robert H. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Artificial Intelligence ; 2375
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Statistical Learning Theory
  • Agnostic Learning Nonconvex Function Classes
  • Entropy, Combinatorial Dimensions and Random Averages
  • Geometric Parameters of Kernel Machines
  • Localized Rademacher Complexities
  • Some Local Measures of Complexity of Convex Hulls and Generalization Bounds
  • Online Learning
  • Path Kernels and Multiplicative Updates
  • Predictive Complexity and Information
  • Mixability and the Existence of Weak Complexities
  • A Second-Order Perceptron Algorithm
  • Tracking Linear-Threshold Concepts with Winnow
  • Inductive Inference
  • Learning Tree Languages from Text
  • Polynomial Time Inductive Inference of Ordered Tree Patterns with Internal Structured Variables from Positive Data
  • Inferring Deterministic Linear Languages
  • Merging Uniform Inductive Learners
  • The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions
  • PAC Learning
  • New Lower Bounds for Statistical Query Learning
  • Exploring Learnability between Exact and PAC
  • PAC Bounds for Multi-armed Bandit and Markov Decision Processes
  • Bounds for the Minimum Disagreement Problem with Applications to Learning Theory
  • On the Proper Learning of Axis Parallel Concepts
  • Boosting
  • A Consistent Strategy for Boosting Algorithms
  • The Consistency of Greedy Algorithms for Classification
  • Maximizing the Margin with Boosting
  • Other Learning Paradigms
  • Performance Guarantees for Hierarchical Clustering
  • Self-Optimizing and Pareto-Optimal Policies in General Environments Based on Bayes-Mixtures
  • Prediction and Dimension
  • Invited Talk
  • Learning the Internet.