Algorithmic Number Theory 5th International Symposium, ANTS-V, Sydney, Australia, July 7-12, 2002. Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Fieker, Claus (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Kohel, David R. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Computer Science, 2369
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05124nam a2200577 4500
001 978-3-540-45455-7
003 DE-He213
005 20191220124710.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540454557  |9 978-3-540-45455-7 
024 7 |a 10.1007/3-540-45455-1  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Algorithmic Number Theory  |h [electronic resource] :  |b 5th International Symposium, ANTS-V, Sydney, Australia, July 7-12, 2002. Proceedings /  |c edited by Claus Fieker, David R. Kohel. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a X, 522 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2369 
505 0 |a Invited Talks -- Gauss Composition and Generalizations -- Elliptic Curves - The Crossroads of Theory and Computation -- The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems -- Using Elliptic Curves of Rank One towards the Undecidability of Hilbert's Tenth Problem over Rings of Algebraic Integers -- On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields -- Number Theory -- On Arithmetically Equivalent Number Fields of Small Degree -- A Survey of Discriminant Counting -- A Higher-Rank Mersenne Problem -- An Application of Siegel Modular Functions to Kronecker's Limit Formula -- Computational Aspects of NUCOMP -- Efficient Computation of Class Numbers of Real Abelian Number Fields -- An Accelerated Buchmann Algorithm for Regulator Computation in Real Quadratic Fields -- Arithmetic Geometry -- Some Genus 3 Curves with Many Points -- Trinomials ax 7 + bx + c and ax 8 + bx + c with Galois Groups of Order 168 and 8 · 168 -- Computations on Modular Jacobian Surfaces -- Integral Points on Punctured Abelian Surfaces -- Genus 2 Curves with (3, 3)-Split Jacobian and Large Automorphism Group -- Transportable Modular Symbols and the Intersection Pairing -- Elliptic Curves and CM -- Action of Modular Correspondences around CM Points -- Curves Dy 2 = x 3 - x of Odd Analytic Rank -- Comparing Invariants for Class Fields of Imaginary Quadratic Fields -- A Database of Elliptic Curves - First Report -- Point Counting -- Isogeny Volcanoes and the SEA Algorithm -- Fast Elliptic Curve Point Counting Using Gaussian Normal Basis -- An Extension of Kedlaya's Algorithm to Artin-Schreier Curves in Characteristic 2 -- Cryptography -- Implementing the Tate Pairing -- Smooth Orders and Cryptographic Applications -- Chinese Remaindering for Algebraic Numbers in a Hidden Field -- Function Fields -- An Algorithm for Computing Weierstrass Points -- New Optimal Tame Towers of Function Fields over Small Finite Fields -- Periodic Continued Fractions in Elliptic Function Fields -- Discrete Logarithms and Factoring -- Fixed Points and Two-Cycles of the Discrete Logarithm -- Random Cayley Digraphs and the Discrete Logarithm -- The Function Field Sieve Is Quite Special -- MPQS with Three Large Primes -- An Improved Baby Step Giant Step Algorithm for Point Counting of Hyperelliptic Curves over Finite Fields -- Factoring N = pq 2 with the Elliptic Curve Method -- Gröbner Bases -- A New Scheme for Computing with Algebraically Closed Fields -- Complexity -- Additive Complexity and Roots of Polynomials over Number Fields and -adic Fields. 
650 0 |a Number theory. 
650 0 |a Algorithms. 
650 0 |a Computer science-Mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Data encryption (Computer science). 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Discrete Mathematics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17028 
650 2 4 |a Numeric Computing.  |0 http://scigraph.springernature.com/things/product-market-codes/I1701X 
650 2 4 |a Cryptology.  |0 http://scigraph.springernature.com/things/product-market-codes/I28020 
650 2 4 |a Algorithms.  |0 http://scigraph.springernature.com/things/product-market-codes/M14018 
700 1 |a Fieker, Claus.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kohel, David R.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662210642 
776 0 8 |i Printed edition:  |z 9783540438632 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2369 
856 4 0 |u https://doi.org/10.1007/3-540-45455-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)