Noise, Oscillators and Algebraic Randomness From Noise in Communication Systems to Number Theory /

Noise is ubiquitous in nature and in man-made systems. Noise in oscillators perturbs high-technology devices such as time standards or digital communication systems. The understanding of its algebraic structure is thus of vital importance. The book addresses both the measurement methods and the unde...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Planat, Michel (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Physics, 550
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Mathemagics
  • Thermal and Quantum Noise in Active Systems
  • Dipole at ? = 1
  • Stored Ion Manipulation Dynamics of Ion Cloud and Quantum Jumps with Single Ions
  • 1/f Fluctuations in Cosmic Ray Extensive Air Showers
  • Stochastic Resonance and the Benefit of Noise in Nonlinear Systems
  • Time is Money
  • Oscillators and the Characterization of Frequency Stability: an Introduction
  • Phase Noise Metrology
  • Phonon Fine Structure in the 1/f Noise of Metals, Semiconductors and Semiconductor Devices
  • The General Nature of Fundamental 1/f Noise in Oscillators and in the High Technology Domain
  • 1/f Frequency Noise in a Communication Receiver and the Riemann Hypothesis
  • Detection of Chaos in the Noise of Electronic Oscillators by Time Series Analysis Methods
  • Geometry and Dynamics of Numbers Under Finite Resolution
  • Diophantine Conditions and Real or Complex Brjuno Functions
  • Algebraic and Analytic Randomness
  • From Symbolic Dynamics to a Digital Approach: Chaos and Transcendence
  • Algebraic Dynamics and Transcendental Numbers
  • Dynamics of Some Contracting Linear Functions Modulo 1
  • On the Modular Function and Its Importance for Arithmetic
  • On Generalized Markoff Equations and Their Interpretation.