Lectures on Amenability

The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Runde, Volker (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Mathematics, 1774
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03710nam a2200589 4500
001 978-3-540-45560-8
003 DE-He213
005 20191027201749.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540455608  |9 978-3-540-45560-8 
024 7 |a 10.1007/b82937  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Runde, Volker.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Amenability  |h [electronic resource] /  |c by Volker Runde. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XIV, 302 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1774 
505 0 |a Paradoxical decompositions -- Amenable, locally comact groups -- Amenable Banach algebras -- Exemples of amenable Banach algebras -- Amenability-like properties -- Banach homology -- C* and W*-algebras -- Operator amenability -- Geometry of spaces of homomorphisms -- Open problems: Abstract harmonic analysis -- Tensor products -- Banach space properties -- Operator spaces -- List of symbols -- References -- Index. 
520 |a The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures on Amenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text. 
650 0 |a Algebra. 
650 0 |a Functional analysis. 
650 0 |a Harmonic analysis. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11000 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Abstract Harmonic Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12015 
650 2 4 |a Category Theory, Homological Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11035 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662185438 
776 0 8 |i Printed edition:  |z 9783540428527 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1774 
856 4 0 |u https://doi.org/10.1007/b82937  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)