Foundations of Quantization for Probability Distributions

Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Graf, Siegfried (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Luschgy, Harald (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Mathematics, 1730
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • I. General properties of the quantization for probability distributions: Voronoi partitions. Centers and moments of probability distributions. The quantization problem. Basic properties of optimal quantizers. Uniqueness and optimality in one dimension
  • II. Asymptotic quantization for nonsingular probability distributions: Asymptotics for the quantization error. Asymptotically optimal quantizers. Regular quantizers and quantization coefficients. Random quantizers and quantization coefficients. Asymptotics for the covering radius
  • III. Asymptotic quantization for singular probability distributions: The quantization dimension. Regular sets and measures of dimension D. Rectifiable curves. Self-similar sets and measures.