Osserman Manifolds in Semi-Riemannian Geometry

The subject of this book is Osserman semi-Riemannian manifolds, and in particular, the Osserman conjecture in semi-Riemannian geometry. The treatment is pitched at the intermediate graduate level and requires some intermediate knowledge of differential geometry. The notation is mostly coordinate-fre...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Garcia-Rio, Eduardo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kupeli, Demir N. (http://id.loc.gov/vocabulary/relators/aut), Vazquez-Lorenzo, Ramon (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Mathematics, 1777
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03079nam a2200517 4500
001 978-3-540-45629-2
003 DE-He213
005 20191028192705.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540456292  |9 978-3-540-45629-2 
024 7 |a 10.1007/b83213  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Garcia-Rio, Eduardo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Osserman Manifolds in Semi-Riemannian Geometry  |h [electronic resource] /  |c by Eduardo Garcia-Rio, Demir N. Kupeli, Ramon Vazquez-Lorenzo. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XIV, 170 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1777 
505 0 |a The Osserman Conditions in Semi-Riemannian Geometry -- The Osserman Conjecture in Riemannian Geometry -- Lorentzian Osserman Manifolds -- Four-Dimensional Semi-Riemannian Osserman Manifolds with Metric Tensors of Signature (2,2) -- Semi-Riemannian Osserman Manifolds -- Generalizations and Osserman-Related Conditions. 
520 |a The subject of this book is Osserman semi-Riemannian manifolds, and in particular, the Osserman conjecture in semi-Riemannian geometry. The treatment is pitched at the intermediate graduate level and requires some intermediate knowledge of differential geometry. The notation is mostly coordinate-free and the terminology is that of modern differential geometry. Known results toward the complete proof of Riemannian Osserman conjecture are given and the Osserman conjecture in Lorentzian geometry is proved completely. Counterexamples to the Osserman conjuncture in generic semi-Riemannian signature are provided and properties of semi-Riemannian Osserman manifolds are investigated. 
650 0 |a Differential geometry. 
650 0 |a Mathematical physics. 
650 1 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
700 1 |a Kupeli, Demir N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vazquez-Lorenzo, Ramon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662201558 
776 0 8 |i Printed edition:  |z 9783540431442 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1777 
856 4 0 |u https://doi.org/10.1007/b83213  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)