Information Retrieval Techniques for Speech Applications

This volume is based on a workshop held on September 13, 2001 in New Orleans, LA, USA as part of the24thAnnualInternationalACMSIGIRConferenceon ResearchandDevelopmentinInformationRetrieval.Thetitleoftheworkshop was: "Information Retrieval Techniques for Speech Applications." Interestinspee...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Coden, Anni R. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Brown, Eric W. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Srinivasan, Savitha (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Computer Science, 2273
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04849nam a2200529 4500
001 978-3-540-45637-7
003 DE-He213
005 20191027132626.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540456377  |9 978-3-540-45637-7 
024 7 |a 10.1007/3-540-45637-6  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
245 1 0 |a Information Retrieval Techniques for Speech Applications  |h [electronic resource] /  |c edited by Anni R. Coden, Eric W. Brown, Savitha Srinivasan. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XII, 116 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2273 
505 0 |a Traditional Information Retrieval Techniques -- Perspectives on Information Retrieval and Speech -- Spoken Document Pre-processing -- Capitalization Recovery for Text -- Adapting IR Techniques to Spoken Documents -- Clustering of Imperfect Transcripts Using a Novel Similarity Measure -- Extracting Keyphrases from Spoken Audio Documents -- Segmenting Conversations by Topic, Initiative, and Style -- Extracting Caller Information from Voicemail -- Techniques for Multi-media Collections -- Speech and Hand Transcribed Retrieval -- New Applications -- The Use of Speech Retrieval Systems: A Study Design -- Speech-Driven Text Retrieval: Using Target IR Collections for Statistical Language Model Adaptation in Speech Recognition -- WASABI: Framework for Real-Time Speech Analysis Applications (Demo). 
520 |a This volume is based on a workshop held on September 13, 2001 in New Orleans, LA, USA as part of the24thAnnualInternationalACMSIGIRConferenceon ResearchandDevelopmentinInformationRetrieval.Thetitleoftheworkshop was: "Information Retrieval Techniques for Speech Applications." Interestinspeechapplicationsdatesbackanumberofdecades.However, it is only in the last few years that automatic speech recognition has left the con?nes of the basic research lab and become a viable commercial application. Speech recognition technology has now matured to the point where speech can be used to interact with automated phone systems, control computer programs, andevencreatememosanddocuments.Movingbeyondcomputercontroland dictation, speech recognition has the potential to dramatically change the way we create,capture,andstoreknowledge.Advancesinspeechrecognitiontechnology combined with ever decreasing storage costs and processors that double in power every eighteen months have set the stage for a whole new era of applications that treat speech in the same way that we currently treat text. The goal of this workshop was to explore the technical issues involved in a- lying information retrieval and text analysis technologies in the new application domainsenabledbyautomaticspeechrecognition.Thesepossibilitiesbringwith themanumberofissues,questions,andproblems.Speech-baseduserinterfaces create di?erent expectations for the end user, which in turn places di?erent - mands on the back-end systems that must interact with the user and interpret theuser'scommands.Speechrecognitionwillneverbeperfect,soanalyses- plied to the resulting transcripts must be robust in the face of recognition errors. The ability to capture speech and apply speech recognition on smaller, more - werful, pervasive devices suggests that text analysis and mining technologies can be applied in new domains never before considered. 
650 0 |a Information storage and retrieval. 
650 0 |a Natural language processing (Computer science). 
650 1 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Natural Language Processing (NLP).  |0 http://scigraph.springernature.com/things/product-market-codes/I21040 
700 1 |a Coden, Anni R.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Brown, Eric W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Srinivasan, Savitha.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662161975 
776 0 8 |i Printed edition:  |z 9783540431565 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2273 
856 4 0 |u https://doi.org/10.1007/3-540-45637-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)