WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points Third International Workshop, San Francisco, CA, USA, August 26, 2001, Revised Papers /

WorkshopTheme The ease and speed with which business transactions can be carried out over the Web has been a key driving force in the rapid growth of electronic commerce. In addition, customer interactions, including personalized content, e-mail c- paigns, and online feedback provide new channels of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kohavi, Ron (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Masand, Brij M. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Spiliopoulou, Myra (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Srivastava, Jaideep (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Artificial Intelligence ; 2356
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05028nam a2200625 4500
001 978-3-540-45640-7
003 DE-He213
005 20191022053657.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540456407  |9 978-3-540-45640-7 
024 7 |a 10.1007/3-540-45640-6  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UB  |2 bicssc 
072 7 |a COM000000  |2 bisacsh 
072 7 |a UB  |2 thema 
082 0 4 |a 000  |2 23 
245 1 0 |a WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points  |h [electronic resource] :  |b Third International Workshop, San Francisco, CA, USA, August 26, 2001, Revised Papers /  |c edited by Ron Kohavi, Brij M. Masand, Myra Spiliopoulou, Jaideep Srivastava. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XI, 166 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 2356 
505 0 |a Detail and Context in Web Usage Mining: Coarsening and Visualizing Sequences -- A Customer Purchase Incidence Model Applied to Recommender Services -- A Cube Model and Cluster Analysis for Web Access Sessions -- Exploiting Web Log Mining for Web Cache Enhancement -- LOGML: Log Markup Language for Web Usage Mining -- A Framework for Efficient and Anonymous Web Usage Mining Based on Client-Side Tracking -- Mining Indirect Associations in Web Data. 
520 |a WorkshopTheme The ease and speed with which business transactions can be carried out over the Web has been a key driving force in the rapid growth of electronic commerce. In addition, customer interactions, including personalized content, e-mail c- paigns, and online feedback provide new channels of communication that were not previously available or were very ine?cient. The Web presents a key driving force in the rapid growth of electronic c- merceandanewchannelforcontentproviders.Knowledgeaboutthecustomeris fundamental for the establishment of viable e-commerce solutions. Rich web logs provide companies with data about their customers and prospective customers, allowing micro-segmentation and personalized interactions. Customer acqui- tion costs in the hundreds of dollars per customer are common, justifying heavy emphasis on correct targeting. Once customers are acquired, customer retention becomes the target. Retention through customer satisfaction and loyalty can be greatly improved by acquiring and exploiting knowledge about these customers and their needs. Althoughweblogsarethesourceforvaluableknowledgepatterns,oneshould keep in mind that the Web is only one of the interaction channels between a company and its customers. Data obtained from conventional channels provide invaluable knowledge on existing market segments, while mobile communication adds further customer groups. In response, companies are beginning to integrate multiple sources of data including web, wireless, call centers, and brick-a- mortar store data into a single data warehouse that provides a multifaceted view of their customers, their preferences, interests, and expectations. 
650 0 |a Computer science. 
650 0 |a Data structures (Computer science). 
650 0 |a Computer simulation. 
650 0 |a Artificial intelligence. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Popular Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/Q23000 
650 2 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Simulation and Modeling.  |0 http://scigraph.springernature.com/things/product-market-codes/I19000 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Database Management.  |0 http://scigraph.springernature.com/things/product-market-codes/I18024 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
700 1 |a Kohavi, Ron.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Masand, Brij M.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Spiliopoulou, Myra.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Srivastava, Jaideep.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662177334 
776 0 8 |i Printed edition:  |z 9783540439691 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 2356 
856 4 0 |u https://doi.org/10.1007/3-540-45640-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)