WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points Third International Workshop, San Francisco, CA, USA, August 26, 2001, Revised Papers /
WorkshopTheme The ease and speed with which business transactions can be carried out over the Web has been a key driving force in the rapid growth of electronic commerce. In addition, customer interactions, including personalized content, e-mail c- paigns, and online feedback provide new channels of...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2002.
|
Έκδοση: | 1st ed. 2002. |
Σειρά: | Lecture Notes in Artificial Intelligence ;
2356 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Detail and Context in Web Usage Mining: Coarsening and Visualizing Sequences
- A Customer Purchase Incidence Model Applied to Recommender Services
- A Cube Model and Cluster Analysis for Web Access Sessions
- Exploiting Web Log Mining for Web Cache Enhancement
- LOGML: Log Markup Language for Web Usage Mining
- A Framework for Efficient and Anonymous Web Usage Mining Based on Client-Side Tracking
- Mining Indirect Associations in Web Data.