Pattern Detection and Discovery ESF Exploratory Workshop, London, UK, September 16-19, 2002. /

The collation of large electronic databases of scienti?c and commercial infor- tion has led to a dramatic growth of interest in methods for discovering struc- res in such databases. These methods often go under the general name of data mining. One important subdiscipline within data mining is concer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Hand, David J. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Adams, Niall, M. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Bolton, Richard J. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Artificial Intelligence ; 2447
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05365nam a2200625 4500
001 978-3-540-45728-2
003 DE-He213
005 20191021222527.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540457282  |9 978-3-540-45728-2 
024 7 |a 10.1007/3-540-45728-3  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
072 7 |a UMT  |2 thema 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Pattern Detection and Discovery  |h [electronic resource] :  |b ESF Exploratory Workshop, London, UK, September 16-19, 2002. /  |c edited by David J Hand, Niall, M. Adams, Richard J. Bolton. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XII, 232 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 2447 
505 0 |a General Issues -- Pattern Detection and Discovery -- Detecting Interesting Instances -- Complex Data: Mining Using Patterns -- Determining Hit Rate in Pattern Search -- An Unsupervised Algorithm for Segmenting Categorical Timeseries into Episodes -- If You Can't See the Pattern, Is It There? -- Association Rules -- Dataset Filtering Techniques in Constraint-Based Frequent Pattern Mining -- Concise Representations of Association Rules -- Constraint-Based Discovery and Inductive Queries: Application to Association Rule Mining -- Relational Association Rules: Getting Warmer -- Text and Web Mining -- Mining Text Data: Special Features and Patterns -- Modelling and Incorporating Background Knowledge in theWeb Mining Process -- Modeling Information in Textual Data Combining Labeled and Unlabeled Data -- Discovery of Frequent Word Sequences in Text -- Applications -- Pattern Detection and Discovery: The Case of Music Data Mining -- Discovery of Core Episodes from Sequences -- Patterns of Dependencies in Dynamic Multivariate Data. 
520 |a The collation of large electronic databases of scienti?c and commercial infor- tion has led to a dramatic growth of interest in methods for discovering struc- res in such databases. These methods often go under the general name of data mining. One important subdiscipline within data mining is concerned with the identi?cation and detection of anomalous, interesting, unusual, or valuable - cords or groups of records, which we call patterns. Familiar examples are the detection of fraud in credit-card transactions, of particular coincident purchases in supermarket transactions, of important nucleotide sequences in gene sequence analysis, and of characteristic traces in EEG records. Tools for the detection of such patterns have been developed within the data mining community, but also within other research communities, typically without an awareness that the - sic problem was common to many disciplines. This is not unreasonable: each of these disciplines has a large literature of its own, and a literature which is growing rapidly. Keeping up with any one of these is di?cult enough, let alone keeping up with others as well, which may in any case be couched in an - familiar technical language. But, of course, this means that opportunities are being lost, discoveries relating to the common problem made in one area are not transferred to the other area, and breakthroughs and problem solutions are being rediscovered, or not discovered for a long time, meaning that e?ort is being wasted and opportunities may be lost. 
650 0 |a Database management. 
650 0 |a Artificial intelligence. 
650 0 |a Algorithms. 
650 0 |a Data structures (Computer science). 
650 0 |a Mathematical statistics. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Database Management.  |0 http://scigraph.springernature.com/things/product-market-codes/I18024 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Probability and Statistics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17036 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
700 1 |a Hand, David J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Adams, Niall, M.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bolton, Richard J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662199459 
776 0 8 |i Printed edition:  |z 9783540441489 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 2447 
856 4 0 |u https://doi.org/10.1007/3-540-45728-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)