Morphology of Condensed Matter Physics and Geometry of Spatially Complex Systems /

The morphology of spatially stuctured materials is a rapidly growing field of research at the interface of statistical physics, applied mathematics and materials science. A wide spectrum of applications encompasses the flow through porous and composite materials as well as microemulsions and foams....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Mecke, Klaus R. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Stoyan, Dietrich (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Physics, 600
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Complex Structured Condensed Matter
  • Spatial Statistics and Micromechanics of Materials
  • Characterising the Morphology of Disordered Materials
  • Topological Characterization of Porous Media
  • Nanotomography: Real-Space Volume Imaging with Scanning Probe Microscopy
  • Bicontinuous Surfaces in Self-assembling Amphiphilic Systems
  • Morphology of Langmuir Monolayer Phases
  • Spatial Order in Liquid Crystals: Computer Simulations of Systems of Ellipsoids
  • Two-Dimensional Fluid Foams at Equilibrium
  • Spatial Statistics and Morphology
  • Morphological Texture Analysis: An Introduction
  • Vector- and Tensor-Valued Descriptors for Spatial Patterns
  • Computational Topology for Point Data: Betti Numbers of ?-Shapes
  • The Euler Number of Discretized Sets - On the Choice of Adjacency in Homogeneous Lattices
  • Shape Statistics for Random Domains and Particles
  • A Survey on Contact Distributions
  • Mark Correlations: Relating Physical Properties to Spatial Distributions
  • Spatial Jump Processes and Perfect Simulation
  • Statistics for Non-sparse Spatially Homogeneous Gibbs Point Processes
  • Spatial Statistics of a Turbulent Random Multiplicative Branching Process.