Coverings of Discrete Quasiperiodic Sets Theory and Applications to Quasicrystals /

Coverings are efficient ways to exhaust Euclidean N-space with congruent geometric objects. Discrete quasiperiodic systems are exemplified by the atomic structure of quasicrystals. The subject of coverings of discrete quasiperiodic sets emerged in 1995. The theory of these coverings provides a new a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kramer, Peter (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Papadopolos, Zorka (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Springer Tracts in Modern Physics, 180
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03331nam a2200529 4500
001 978-3-540-45805-0
003 DE-He213
005 20191027201619.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540458050  |9 978-3-540-45805-0 
024 7 |a 10.1007/3-540-45805-0  |2 doi 
040 |d GrThAP 
050 4 |a QC173.45-173.458 
072 7 |a PHFC  |2 bicssc 
072 7 |a SCI077000  |2 bisacsh 
072 7 |a PHFC  |2 thema 
082 0 4 |a 530.474  |2 23 
245 1 0 |a Coverings of Discrete Quasiperiodic Sets  |h [electronic resource] :  |b Theory and Applications to Quasicrystals /  |c edited by Peter Kramer, Zorka Papadopolos. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XV, 273 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Modern Physics,  |x 0081-3869 ;  |v 180 
505 0 |a Covering of Discrete Quasiperiodic Sets: Concepts and Theory -- Covering Clusters in Icosahedral Quasicrystals -- Generation of Quasiperiodic Order by Maximal Cluster Covering -- Voronoi and Delone Clusters in Dual Quasiperiodic Tilings -- The Efficiency of Delone Coverings of the Canonical Tilings ? *(a4) and ? *(d6) -- Lines and Planes in 2- and 3-Dimensional Quasicrystals -- Thermally-Induced Tile Rearrangements in Decagonal Quasicrystals - Superlattice Ordering and Phason Fluctuation -- Tilings and Coverings of Quasicrystal Surfaces. 
520 |a Coverings are efficient ways to exhaust Euclidean N-space with congruent geometric objects. Discrete quasiperiodic systems are exemplified by the atomic structure of quasicrystals. The subject of coverings of discrete quasiperiodic sets emerged in 1995. The theory of these coverings provides a new and fascinating perspective of order down to the atomic level. The authors develop concepts related to quasiperiodic coverings and describe results. Specific systems in 2 and 3 dimensions are described with many illustrations. The atomic positions in quasicrystals are analyzed. 
650 0 |a Phase transitions (Statistical physics). 
650 0 |a Crystallography. 
650 0 |a Group theory. 
650 1 4 |a Phase Transitions and Multiphase Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P25099 
650 2 4 |a Crystallography and Scattering Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/P25056 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
700 1 |a Kramer, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Papadopolos, Zorka.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642077494 
776 0 8 |i Printed edition:  |z 9783540432418 
776 0 8 |i Printed edition:  |z 9783662146262 
830 0 |a Springer Tracts in Modern Physics,  |x 0081-3869 ;  |v 180 
856 4 0 |u https://doi.org/10.1007/3-540-45805-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-BAE 
950 |a Physics and Astronomy (Springer-11651)