Coverings of Discrete Quasiperiodic Sets Theory and Applications to Quasicrystals /
Coverings are efficient ways to exhaust Euclidean N-space with congruent geometric objects. Discrete quasiperiodic systems are exemplified by the atomic structure of quasicrystals. The subject of coverings of discrete quasiperiodic sets emerged in 1995. The theory of these coverings provides a new a...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2003.
|
Έκδοση: | 1st ed. 2003. |
Σειρά: | Springer Tracts in Modern Physics,
180 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Covering of Discrete Quasiperiodic Sets: Concepts and Theory
- Covering Clusters in Icosahedral Quasicrystals
- Generation of Quasiperiodic Order by Maximal Cluster Covering
- Voronoi and Delone Clusters in Dual Quasiperiodic Tilings
- The Efficiency of Delone Coverings of the Canonical Tilings ? *(a4) and ? *(d6)
- Lines and Planes in 2- and 3-Dimensional Quasicrystals
- Thermally-Induced Tile Rearrangements in Decagonal Quasicrystals - Superlattice Ordering and Phason Fluctuation
- Tilings and Coverings of Quasicrystal Surfaces.