Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors

Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. T...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bruinier, Jan H. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Mathematics, 1780
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03223nam a2200505 4500
001 978-3-540-45872-2
003 DE-He213
005 20191028181757.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540458722  |9 978-3-540-45872-2 
024 7 |a 10.1007/b83278  |2 doi 
040 |d GrThAP 
050 4 |a QA247-247.45 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.3  |2 23 
100 1 |a Bruinier, Jan H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors  |h [electronic resource] /  |c by Jan H. Bruinier. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a VIII, 156 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1780 
505 0 |a Introduction -- Vector valued modular forms for the metaplectic group. The Weil representation. Poincaré series and Einstein series. Non-holomorphic Poincaré series of negative weight -- The regularized theta lift. Siegel theta functions. The theta integral. Unfolding against F. Unfolding against theta -- The Fourier theta lift. Lorentzian lattices. Lattices of signature (2,l). Modular forms on orthogonal groups. Borcherds products -- Some Riemann geometry on O(2,l). The invariant Laplacian. Reduction theory and L^p-estimates. Modular forms with zeros and poles on Heegner divisors -- Chern classes of Heegner divisors. A lifting into cohomology. Modular forms with zeros and poles on Heegner divisors II. 
520 |a Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Algebraic geometry. 
650 1 4 |a Field Theory and Polynomials.  |0 http://scigraph.springernature.com/things/product-market-codes/M11051 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540433200 
776 0 8 |i Printed edition:  |z 9783662163696 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1780 
856 4 0 |u https://doi.org/10.1007/b83278  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)