Hankel Norm Approximation for Infinite-Dimensional Systems

Model reduction is an important engineering problem in which one aims to replace an elaborate model by a simpler model without undue loss of accuracy. The accuracy can be mathematically measured in several possible norms and the Hankel norm is one such. The Hankel norm gives a meaningful notion of d...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sasane, A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Control and Information Sciences, 277
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03678nam a2200637 4500
001 978-3-540-45877-7
003 DE-He213
005 20191022054504.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540458777  |9 978-3-540-45877-7 
024 7 |a 10.1007/3-540-45877-8  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Sasane, A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hankel Norm Approximation for Infinite-Dimensional Systems  |h [electronic resource] /  |c by A. Sasane. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a VIII, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 277 
505 0 |a Classes of well-posed linear systems -- Compactness and nuclearity of Hankel operators -- Characterization of all solutions -- State space solutions -- The non-exponentially stable case -- The case of regular linear systems -- Coda. 
520 |a Model reduction is an important engineering problem in which one aims to replace an elaborate model by a simpler model without undue loss of accuracy. The accuracy can be mathematically measured in several possible norms and the Hankel norm is one such. The Hankel norm gives a meaningful notion of distance between two linear systems: roughly speaking, it is the induced norm of the operator that maps past inputs to future outputs. It turns out that the engineering problem of model reduction in the Hankel norm is closely related to the mathematical problem of finding solutions to the sub-optimal Nehari-Takagi problem, which is called "the sub-optimal Hankel norm approximation problem" in this book. Although the existence of a solution to the sub-optimal Hankel norm approximation problem has been known since the 1970s, this book presents explicit solutions and, in particular, new formulae for several large classes of infinite-dimensional systems for the first time. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Computational complexity. 
650 0 |a System theory. 
650 0 |a Physics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 http://scigraph.springernature.com/things/product-market-codes/T19000 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Vibration, Dynamical Systems, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/T15036 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662162491 
776 0 8 |i Printed edition:  |z 9783540433279 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 277 
856 4 0 |u https://doi.org/10.1007/3-540-45877-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-LNI 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)