Isabelle/HOL A Proof Assistant for Higher-Order Logic /

This volume is a self-contained introduction to interactive proof in high- order logic (HOL), using the proof assistant Isabelle 2002. Compared with existing Isabelle documentation, it provides a direct route into higher-order logic, which most people prefer these days. It bypasses ?rst-order logic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Nipkow, Tobias (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Paulson, Lawrence C. (http://id.loc.gov/vocabulary/relators/aut), Wenzel, Markus (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Computer Science, 2283
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04625nam a2200613 4500
001 978-3-540-45949-1
003 DE-He213
005 20191027131450.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540459491  |9 978-3-540-45949-1 
024 7 |a 10.1007/3-540-45949-9  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 005.131  |2 23 
100 1 |a Nipkow, Tobias.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Isabelle/HOL  |h [electronic resource] :  |b A Proof Assistant for Higher-Order Logic /  |c by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XIV, 226 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2283 
505 0 |a Elementary Techniques -- 1. The Basics -- 2. Functional Programming in HOL -- 3. More Functional Programming -- 4. Presenting Theories -- Logic and Sets -- 5. The Rules of the Game -- 6. Sets, Functions, and Relations -- 7. Inductively Defined Sets -- Advanced Material -- 8. More about Types -- 9. Advanced Simplification, Recursion, and Induction -- 10. Case Study: Verifying a Security Protocol. 
520 |a This volume is a self-contained introduction to interactive proof in high- order logic (HOL), using the proof assistant Isabelle 2002. Compared with existing Isabelle documentation, it provides a direct route into higher-order logic, which most people prefer these days. It bypasses ?rst-order logic and minimizes discussion of meta-theory. It is written for potential users rather than for our colleagues in the research world. Another departure from previous documentation is that we describe Markus Wenzel's proof script notation instead of ML tactic scripts. The l- ter make it easier to introduce new tactics on the ?y, but hardly anybody does that. Wenzel's dedicated syntax is elegant, replacing for example eight simpli?cation tactics with a single method, namely simp, with associated - tions. The book has three parts. - The ?rst part, Elementary Techniques, shows how to model functional programs in higher-order logic. Early examples involve lists and the natural numbers. Most proofs are two steps long, consisting of induction on a chosen variable followed by the auto tactic. But even this elementary part covers such advanced topics as nested and mutual recursion. - The second part, Logic and Sets, presents a collection of lower-level tactics that you can use to apply rules selectively. It also describes I- belle/HOL's treatment of sets, functions, and relations and explains how to de?ne sets inductively. One of the examples concerns the theory of model checking, and another is drawn from a classic textbook on formal languages. 
650 0 |a Mathematical logic. 
650 0 |a Logic. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Computer logic. 
650 0 |a Programming languages (Electronic computers). 
650 1 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a Logic.  |0 http://scigraph.springernature.com/things/product-market-codes/E16000 
650 2 4 |a Theory of Computation.  |0 http://scigraph.springernature.com/things/product-market-codes/I16005 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Logics and Meanings of Programs.  |0 http://scigraph.springernature.com/things/product-market-codes/I1603X 
650 2 4 |a Programming Languages, Compilers, Interpreters.  |0 http://scigraph.springernature.com/things/product-market-codes/I14037 
700 1 |a Paulson, Lawrence C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wenzel, Markus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662182291 
776 0 8 |i Printed edition:  |z 9783540433767 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2283 
856 4 0 |u https://doi.org/10.1007/3-540-45949-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)