Hybrid Neural Systems

Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Wermter, Stefan (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Sun, Ron (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Artificial Intelligence ; 1778
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05209nam a2200553 4500
001 978-3-540-46417-4
003 DE-He213
005 20191024201445.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540464174  |9 978-3-540-46417-4 
024 7 |a 10.1007/10719871  |2 doi 
040 |d GrThAP 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
245 1 0 |a Hybrid Neural Systems  |h [electronic resource] /  |c edited by Stefan Wermter, Ron Sun. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a XI, 401 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 1778 
505 0 |a An Overview of Hybrid Neural Systems -- An Overview of Hybrid Neural Systems -- Structured Connectionism and Rule Representation -- Layered Hybrid Connectionist Models for Cognitive Science -- Types and Quantifiers in SHRUTI - A Connectionist Model of Rapid Reasoning and Relational Processing -- A Recursive Neural Network for Reflexive Reasoning -- A Novel Modular Neural Architecture for Rule-Based and Similarity-Based Reasoning -- Addressing Knowledge-Representation Issues in Connectionist Symbolic Rule Encoding for General Inference -- Towards a Hybrid Model of First-Order Theory Refinement -- Distributed Neural Architectures and Language Processing -- Dynamical Recurrent Networks for Sequential Data Processing -- Fuzzy Knowledge and Recurrent Neural Networks: A Dynamical Systems Perspective -- Combining Maps and Distributed Representations for Shift-Reduce Parsing -- Towards Hybrid Neural Learning Internet Agents -- A Connectionist Simulation of the Empirical Acquisition of Grammatical Relations -- Large Patterns Make Great Symbols: An Example of Learning from Example -- Context Vectors: A Step Toward a "Grand Unified Representation" -- Integration of Graphical Rules with Adaptive Learning of Structured Information -- Transformation and Explanation -- Lessons from Past, Current Issues, and Future Research Directions in Extracting the Knowledge Embedded in Artificial Neural Networks -- Symbolic Rule Extraction from the DIMLP Neural Network -- Understanding State Space Organization in Recurrent Neural Networks with Iterative Function Systems Dynamics -- Direct Explanations and Knowledge Extraction from a Multilayer Perceptron Network that Performs Low Back Pain Classification -- High Order Eigentensors as Symbolic Rules in Competitive Learning -- Holistic Symbol Processing and the Sequential RAAM: An Evaluation -- Robotics, Vision and Cognitive Approaches -- Life, Mind, and Robots -- Supplementing Neural Reinforcement Learning with Symbolic Methods -- Self-Organizing Maps in Symbol Processing -- Evolution of Symbolisation: Signposts to a Bridge between Connectionist and Symbolic Systems -- A Cellular Neural Associative Array for Symbolic Vision -- Application of Neurosymbolic Integration for Environment Modelling in Mobile Robots. 
520 |a Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches. 
650 0 |a Neurosciences. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Microprocessors. 
650 1 4 |a Neurosciences.  |0 http://scigraph.springernature.com/things/product-market-codes/B18006 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
650 2 4 |a Processor Architectures.  |0 http://scigraph.springernature.com/things/product-market-codes/I13014 
700 1 |a Wermter, Stefan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sun, Ron.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662180006 
776 0 8 |i Printed edition:  |z 9783540673057 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 1778 
856 4 0 |u https://doi.org/10.1007/10719871  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)