Large-Scale Parallel Data Mining
Corporate Author: | |
---|---|
Other Authors: | , |
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2000.
|
Edition: | 1st ed. 2000. |
Series: | Lecture Notes in Artificial Intelligence ;
1759 |
Subjects: | |
Online Access: | Full Text via HEAL-Link |
Table of Contents:
- Large-Scale Parallel Data Mining
- Parallel and Distributed Data Mining: An Introduction
- Mining Frameworks
- The Integrated Delivery of Large-Scale Data Mining: The ACSys Data Mining Project
- A High Performance Implementation of the Data Space Transfer Protocol (DSTP)
- Active Mining in a Distributed Setting
- Associations and Sequences
- Efficient Parallel Algorithms for Mining Associations
- Parallel Branch-and-Bound Graph Search for Correlated Association Rules
- Parallel Generalized Association Rule Mining on Large Scale PC Cluster
- Parallel Sequence Mining on Shared-Memory Machines
- Classification
- Parallel Predictor Generation
- Efficient Parallel Classification Using Dimensional Aggregates
- Learning Rules from Distributed Data
- Clustering
- Collective, Hierarchical Clustering from Distributed, Heterogeneous Data
- A Data-Clustering Algorithm on Distributed Memory Multiprocessors.