Lattice-Gas Cellular Automata and Lattice Boltzmann Models An Introduction /

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wolf-Gladrow, Dieter A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Mathematics, 1725
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • From the contents: Introduction: Preface; Overview
  • The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata
  • One-dimensional cellular automata
  • Two-dimensional cellular automata
  • Lattice-gas cellular automata: The HPP lattice-gas cellular automata
  • The FHP lattice-gas cellular automata
  • Lattice tensors and isotropy in the macroscopic limit
  • Desperately seeking a lattice for simulations in three dimensions
  • 5 FCHC
  • The pair interaction (PI) lattice-gas cellular automata
  • Multi-speed and thermal lattice-gas cellular automata
  • Zanetti (staggered) invariants
  • Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation
  • Chapman-Enskog: From Boltzmann to Navier-Stokes
  • The maximum entropy principle. Lattice Boltzmann Models: .... Appendix.