Diffraction by an Immersed Elastic Wedge

This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Croisille, Jean-Pierre (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Lebeau, Gilles (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Έκδοση:1st ed. 1999.
Σειρά:Lecture Notes in Mathematics, 1723
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03076nam a2200541 4500
001 978-3-540-46698-7
003 DE-He213
005 20191028213004.0
007 cr nn 008mamaa
008 121227s1999 gw | s |||| 0|eng d
020 |a 9783540466987  |9 978-3-540-46698-7 
024 7 |a 10.1007/BFb0092515  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Croisille, Jean-Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Diffraction by an Immersed Elastic Wedge  |h [electronic resource] /  |c by Jean-Pierre Croisille, Gilles Lebeau. 
250 |a 1st ed. 1999. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1999. 
300 |a VIII, 140 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1723 
505 0 |a Notation and results -- The spectral function -- Proofs of the results -- Numerical algorithm -- Numerical results. 
520 |a This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers. 
650 0 |a Numerical analysis. 
650 0 |a Physics. 
650 0 |a Acoustics. 
650 1 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Numerical and Computational Physics, Simulation.  |0 http://scigraph.springernature.com/things/product-market-codes/P19021 
650 2 4 |a Acoustics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21069 
700 1 |a Lebeau, Gilles.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662168318 
776 0 8 |i Printed edition:  |z 9783540668107 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1723 
856 4 0 |u https://doi.org/10.1007/BFb0092515  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)