Algorithmic Learning Theory 10th International Conference, ALT '99 Tokyo, Japan, December 6-8, 1999 Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Watanabe, Osamu (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Yokomori, Takashi (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Έκδοση:1st ed. 1999.
Σειρά:Lecture Notes in Artificial Intelligence ; 1720
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Invited Lectures
  • Tailoring Representations to Different Requirements
  • Theoretical Views of Boosting and Applications
  • Extended Stochastic Complexity and Minimax Relative Loss Analysis
  • Regular Contributions
  • Algebraic Analysis for Singular Statistical Estimation
  • Generalization Error of Linear Neural Networks in Unidentifiable Cases
  • The Computational Limits to the Cognitive Power of the Neuroidal Tabula Rasa
  • The Consistency Dimension and Distribution-Dependent Learning from Queries (Extended Abstract)
  • The VC-Dimension of Subclasses of Pattern Languages
  • On the V ? Dimension for Regression in Reproducing Kernel Hilbert Spaces
  • On the Strength of Incremental Learning
  • Learning from Random Text
  • Inductive Learning with Corroboration
  • Flattening and Implication
  • Induction of Logic Programs Based on ?-Terms
  • Complexity in the Case Against Accuracy: When Building One Function-Free Horn Clause Is as Hard as Any
  • A Method of Similarity-Driven Knowledge Revision for Type Specializations
  • PAC Learning with Nasty Noise
  • Positive and Unlabeled Examples Help Learning
  • Learning Real Polynomials with a Turing Machine
  • Faster Near-Optimal Reinforcement Learning: Adding Adaptiveness to the E3 Algorithm
  • A Note on Support Vector Machine Degeneracy
  • Learnability of Enumerable Classes of Recursive Functions from "Typical" Examples
  • On the Uniform Learnability of Approximations to Non-recursive Functions
  • Learning Minimal Covers of Functional Dependencies with Queries
  • Boolean Formulas Are Hard to Learn for Most Gate Bases
  • Finding Relevant Variables in PAC Model with Membership Queries
  • General Linear Relations among Different Types of Predictive Complexity
  • Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph
  • On Learning Unions of Pattern Languages and Tree Patterns.