Shape, Contour and Grouping in Computer Vision

Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon's view of a patient, and to recognise some of the gestu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Forsyth, David A. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Mundy, Joseph L. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Gesu, Vito di (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Cipolla, Roberto (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Έκδοση:1st ed. 1999.
Σειρά:Lecture Notes in Computer Science, 1681
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04771nam a2200601 4500
001 978-3-540-46805-9
003 DE-He213
005 20191023201912.0
007 cr nn 008mamaa
008 121227s1999 gw | s |||| 0|eng d
020 |a 9783540468059  |9 978-3-540-46805-9 
024 7 |a 10.1007/3-540-46805-6  |2 doi 
040 |d GrThAP 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Shape, Contour and Grouping in Computer Vision  |h [electronic resource] /  |c edited by David A. Forsyth, Joseph L. Mundy, Vito di Gesu, Roberto Cipolla. 
250 |a 1st ed. 1999. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1999. 
300 |a VIII, 350 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 1681 
505 0 |a An Empirical-Statistical Agenda for Recognition -- A Formal-Physical Agenda for Recognition -- Shape -- Shape Models and Object Recognition -- Order Structure, Correspondence, and Shape Based Categories -- Quasi-Invariant Parameterisations and Their Applications in Computer Vision -- Shading -- Representations for Recognition Under Variable Illumination -- Shadows, Shading, and Projective Ambiguity -- Grouping -- Grouping in the Normalized Cut Framework -- Geometric Grouping of Repeated Elements within Images -- Constrained Symmetry for Change Detection -- Grouping Based on Coupled Diffusion Maps -- Representation and Recognition -- Integrating Geometric and Photometric Information for Image Retrieval -- Towards the Integration of Geometric and Appearance-Based Object Recognition -- Recognizing Objects Using Color-Annotated Adjacency Graphs -- A Cooperating Strategy for Objects Recognition -- Statistics, Learning and Recognition -- Model Selection for Two View Geometry:A Review -- Finding Objects by Grouping Primitives -- Object Recognition with Gradient-Based Learning. 
520 |a Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon's view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world. 
650 0 |a Optical data processing. 
650 0 |a Pattern recognition. 
650 0 |a Computer graphics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Computer Graphics.  |0 http://scigraph.springernature.com/things/product-market-codes/I22013 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Forsyth, David A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mundy, Joseph L.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gesu, Vito di.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cipolla, Roberto.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662209899 
776 0 8 |i Printed edition:  |z 9783540667223 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 1681 
856 4 0 |u https://doi.org/10.1007/3-540-46805-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)