Monomialization of Morphisms from 3-Folds to Surfaces

A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e'tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequence...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cutkosky, Steven D. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Mathematics, 1786
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02880nam a2200469 4500
001 978-3-540-48030-3
003 DE-He213
005 20191028022056.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540480303  |9 978-3-540-48030-3 
024 7 |a 10.1007/b83848  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Cutkosky, Steven D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Monomialization of Morphisms from 3-Folds to Surfaces  |h [electronic resource] /  |c by Steven D. Cutkosky. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a VIII, 240 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1786 
505 0 |a 1. Introduction -- 2. Local Monomialization -- 3. Monomialization of Morphisms in Low Dimensions -- 4. An Overview of the Proof of Monomialization of Morphisms from 3 Folds to Surfaces -- 5. Notations -- 6. The Invariant v -- 7. The Invariant v under Quadratic Transforms -- 8. Permissible Monoidal Transforms Centered at Curves -- 9. Power Series in 2 Variables -- 10. Ar(X) -- 11.Reduction of v in a Special Case -- 12. Reduction of v in a Second Special Case -- 13. Resolution 1 -- 14. Resolution 2 -- 15. Resolution 3 -- 16. Resolution 4 -- 17. Proof of the main Theorem -- 18. Monomialization -- 19. Toroidalization -- 20. Glossary of Notations and definitions -- References. 
520 |a A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e'tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S. The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662208861 
776 0 8 |i Printed edition:  |z 9783540437802 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1786 
856 4 0 |u https://doi.org/10.1007/b83848  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)