Monomialization of Morphisms from 3-Folds to Surfaces
A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e'tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequence...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2002.
|
Έκδοση: | 1st ed. 2002. |
Σειρά: | Lecture Notes in Mathematics,
1786 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Introduction
- 2. Local Monomialization
- 3. Monomialization of Morphisms in Low Dimensions
- 4. An Overview of the Proof of Monomialization of Morphisms from 3 Folds to Surfaces
- 5. Notations
- 6. The Invariant v
- 7. The Invariant v under Quadratic Transforms
- 8. Permissible Monoidal Transforms Centered at Curves
- 9. Power Series in 2 Variables
- 10. Ar(X)
- 11.Reduction of v in a Special Case
- 12. Reduction of v in a Second Special Case
- 13. Resolution 1
- 14. Resolution 2
- 15. Resolution 3
- 16. Resolution 4
- 17. Proof of the main Theorem
- 18. Monomialization
- 19. Toroidalization
- 20. Glossary of Notations and definitions
- References.