Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators

This book addresses both probabilists working on diffusion processes and analysts interested in linear parabolic partial differential equations with singular coefficients. The central question discussed is whether a given diffusion operator, i.e., a second order linear differential operator without...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Eberle, Andreas (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Έκδοση:1st ed. 1999.
Σειρά:Lecture Notes in Mathematics, 1718
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03178nam a2200565 4500
001 978-3-540-48076-1
003 DE-He213
005 20191028213202.0
007 cr nn 008mamaa
008 121227s1999 gw | s |||| 0|eng d
020 |a 9783540480761  |9 978-3-540-48076-1 
024 7 |a 10.1007/BFb0103045  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Eberle, Andreas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators  |h [electronic resource] /  |c by Andreas Eberle. 
250 |a 1st ed. 1999. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1999. 
300 |a VIII, 268 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1718 
505 0 |a Motivation and basic definitions: Uniqueness problems in various contexts -- L p uniqueness in finite dimensions -- Markov uniqueness -- Probabilistic aspects of L p and Markov uniqueness -- First steps in infinite dimensions. 
520 |a This book addresses both probabilists working on diffusion processes and analysts interested in linear parabolic partial differential equations with singular coefficients. The central question discussed is whether a given diffusion operator, i.e., a second order linear differential operator without zeroth order term, which is a priori defined on test functions over some (finite or infinite dimensional) state space only, uniquely determines a strongly continuous semigroup on a corresponding weighted Lp space. Particular emphasis is placed on phenomena causing non-uniqueness, as well as on the relation between different notions of uniqueness appearing in analytic and probabilistic contexts. 
650 0 |a Probabilities. 
650 0 |a Partial differential equations. 
650 0 |a Group theory. 
650 0 |a Potential theory (Mathematics). 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Potential Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12163 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662194362 
776 0 8 |i Printed edition:  |z 9783540666288 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1718 
856 4 0 |u https://doi.org/10.1007/BFb0103045  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)