Lectures on Probability Theory and Statistics Ecole d'Ete de Probabilites de Saint-Flour XXVII - 1997 /

Part I, Bertoin, J.: Subordinators: Examples and Applications: Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Ran...

Full description

Bibliographic Details
Main Authors: Bertoin, J. (Author, http://id.loc.gov/vocabulary/relators/aut), Martinelli, F. (http://id.loc.gov/vocabulary/relators/aut), Peres, Y. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Other Authors: Bernard, Pierre (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Edition:1st ed. 1999.
Series:Lecture Notes in Mathematics, 1717
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04615nam a2200553 4500
001 978-3-540-48115-7
003 DE-He213
005 20191028212756.0
007 cr nn 008mamaa
008 121227s1999 gw | s |||| 0|eng d
020 |a 9783540481157  |9 978-3-540-48115-7 
024 7 |a 10.1007/b72002  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Bertoin, J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Probability Theory and Statistics  |h [electronic resource] :  |b Ecole d'Ete de Probabilites de Saint-Flour XXVII - 1997 /  |c by J. Bertoin, F. Martinelli, Y. Peres ; edited by Pierre Bernard. 
250 |a 1st ed. 1999. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1999. 
300 |a X, 298 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1717 
505 0 |a From the contents: Subordinators: Examples and Applications: Foreword -- Elements on subordinators -- Regenerative property -- Asymptotic behaviour of last passage times -- Rates of growth of local time -- Geometric properties of regenerative sets -- Burgers equation with Brownian initial velocity -- Random covering -- Lévy processes -- Occupation times of a linear Brownian motion -- Lectures on Glauber Dynamics for Discrete Spin Models: Introduction -- Gibbs Measures of Lattice Spin Models -- The Glauber Dynamics -- One Phase Region -- Boundary Phase Transitions -- Phase Coexistence -- Glauber Dynamics for the Dilute Ising Model -- Probability on Trees: An Introductory Climb: Preface -- Basic Definitions and a Few Highlights -- Galton-Watson Trees -- General percolation on a connected graph -- The first-Moment method -- Quasi-independent Percolation -- The second Moment Method -- Electrical Networks -- Infinite Networks -- The Method of Random Paths -- Transience of Percolation Clusters -- Subperiodic Trees -- ..... 
520 |a Part I, Bertoin, J.: Subordinators: Examples and Applications: Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- Lévy processes.- Occupation times of a linear Brownian motion.- Part II, Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.- Part III, Peres, Yu.: Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- The Random Walks RW (lambda) .- Capacity.-.Intersection-Equivalence.- Reconstruction for the Ising Model on a Tree,- Unpredictable Paths in Z and EIT in Z3.- Tree-Indexed Processes.- Recurrence for Tree-Indexed Markov Chains.- Dynamical Pecsolation.- Stochastic Domination Between Trees. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
700 1 |a Martinelli, F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Peres, Y.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Bernard, Pierre.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662198414 
776 0 8 |i Printed edition:  |z 9783540665939 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1717 
856 4 0 |u https://doi.org/10.1007/b72002  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)