Concentration Inequalities and Model Selection Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 /

Since the impressive works of Talagrand, concentration inequalities have been recognized as fundamental tools in several domains such as geometry of Banach spaces or random combinatorics. They also turn out to be essential tools to develop a non-asymptotic theory in statistics, exactly as the centra...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Massart, Pascal (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Picard, Jean (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1896
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02793nam a22005295i 4500
001 978-3-540-48503-2
003 DE-He213
005 20151204174320.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540485032  |9 978-3-540-48503-2 
024 7 |a 10.1007/978-3-540-48503-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Massart, Pascal.  |e author. 
245 1 0 |a Concentration Inequalities and Model Selection  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 /  |c by Pascal Massart ; edited by Jean Picard. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XIV, 343 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1896 
505 0 |a Exponential and Information Inequalities -- Gaussian Processes -- Gaussian Model Selection -- Concentration Inequalities -- Maximal Inequalities -- Density Estimation via Model Selection -- Statistical Learning. 
520 |a Since the impressive works of Talagrand, concentration inequalities have been recognized as fundamental tools in several domains such as geometry of Banach spaces or random combinatorics. They also turn out to be essential tools to develop a non-asymptotic theory in statistics, exactly as the central limit theorem and large deviations are known to play a central part in the asymptotic theory. An overview of a non-asymptotic theory for model selection is given here and some selected applications to variable selection, change points detection and statistical learning are discussed. This volume reflects the content of the course given by P. Massart in St. Flour in 2003. It is mostly self-contained and accessible to graduate students. 
650 0 |a Mathematics. 
650 0 |a Information theory. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Information and Communication, Circuits. 
700 1 |a Picard, Jean.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540484974 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1896 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-48503-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)