Fluctuation Theory for Lévy Processes Ecole d'Eté de Probabilités de Saint-Flour XXXV - 2005 /

Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storag...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Doney, Ronald A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Picard, Jean (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1897
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02739nam a22004815i 4500
001 978-3-540-48511-7
003 DE-He213
005 20151204152951.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540485117  |9 978-3-540-48511-7 
024 7 |a 10.1007/978-3-540-48511-7  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Doney, Ronald A.  |e author. 
245 1 0 |a Fluctuation Theory for Lévy Processes  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXV - 2005 /  |c by Ronald A. Doney ; edited by Jean Picard. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a IX, 155 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1897 
505 0 |a to Lévy Processes -- Subordinators -- Local Times and Excursions -- Ladder Processes and the Wiener–Hopf Factorisation -- Further Wiener–Hopf Developments -- Creeping and Related Questions -- Spitzer's Condition -- Lévy Processes Conditioned to Stay Positive -- Spectrally Negative Lévy Processes -- Small-Time Behaviour. 
520 |a Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, ... and of course finance, where the feature that they include examples having "heavy tails" is particularly important. Their sample path behaviour poses a variety of difficult and fascinating problems. Such problems, and also some related distributional problems, are addressed in detail in these notes that reflect the content of the course given by R. Doney in St. Flour in 2005. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Picard, Jean.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540485100 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1897 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-48511-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)