Numerical Methods for Optimal Control Problems with State Constraints

While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence anal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pytlak, Radoslaw (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Έκδοση:1st ed. 1999.
Σειρά:Lecture Notes in Mathematics, 1707
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03398nam a2200553 4500
001 978-3-540-48662-6
003 DE-He213
005 20191026111906.0
007 cr nn 008mamaa
008 121227s1999 gw | s |||| 0|eng d
020 |a 9783540486626  |9 978-3-540-48662-6 
024 7 |a 10.1007/BFb0097244  |2 doi 
040 |d GrThAP 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Pytlak, Radoslaw.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Methods for Optimal Control Problems with State Constraints  |h [electronic resource] /  |c by Radoslaw Pytlak. 
250 |a 1st ed. 1999. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1999. 
300 |a XV, 218 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1707 
505 0 |a Estimates on solutions to differential equations and their approximations -- First order method -- Implementation -- Second order method -- Runge-Kutta based procedure for optimal control of differential- Algebraic Equations. 
520 |a While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature. 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 0 |a Numerical analysis. 
650 0 |a Economic theory. 
650 1 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26016 
650 2 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/W29000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662163924 
776 0 8 |i Printed edition:  |z 9783540662143 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1707 
856 4 0 |u https://doi.org/10.1007/BFb0097244  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)